<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>N</mi> <mo>=</mo> <msubsup> <mi>p</mi> <mn>1</mn> <mrow data-mjx-texclass="ORD"> <msub> <mi>a</mi> <mn>1</mn> </msub> </mrow> </msubsup> <msubsup> <mi>p</mi> <mn>2</mn> <mrow data-mjx-texclass="ORD"> <msub> <mi>a</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>.</mo> <mo>.</mo> <mo>.</mo> <msubsup> <mi>p</mi> <mi>m</mi> <mrow
你给出的数学公式 \(N = p_{1}^{a_{1}}p_{2}^{a_{2}}\cdots p_{m}^{a_{m}}\) 是正整数 \(N\) 的标准分解式。 公式含义 - 在这个公式里,\(p_1,p_2,\cdots,p_m\) 是不同的质数,且满足 \(p_1 < p_2<\cdots < p_m\)。 - \(a_1,a_2,\cdots,a_m\) 是正整数,分别表示各个质因数 \(p_1,p_2,\cdots,p_m\) 的指数。 相关定理 根据算术基本定理(唯一分解定理),任何一个大于 \(1\) 的正整数 \(N\) 都可以唯一地写成这样的形式,即存在唯一一组质数 \(p_1 < p_2<\cdots < p_m\) 和正整数 \(a_1,a_2,\cdots,a_m\),使得 \(N = p_{1}^{a_{1}}p_{2}^{a_{2}}\cdots p_{m}^{a_{m}}\)。 示例 例如,将 \(120\) 分解质因数: \(120=2^3\times3^1\times5^1\),这里 \(p_1 = 2\),\(a_1 = 3\);\(p_2 = 3\),\(a_2 = 1\);\(p_3 = 5\),\(a_3 = 1\)。 应用场景 这个标准分解式在数论中有很多应用,比如计算正整数 \(N\) 的约数个数。若 \(N = p_{1}^{a_{1}}p_{2}^{a_{2}}\cdots p_{m}^{a_{m}}\),那么 \(N\) 的正约数个数为 \(\tau(N)=(a_1 + 1)(a_2 + 1)\cdots(a_m+ 1)\)。对于 \(N = 120=2^3\times3^1\times5^1\),其正约数个数为 \((3 + 1)\times(1+ 1)\times(1 + 1)=16\) 个。 [2026-01-25 09:47:27 | AI问答 | 513点数解答]
- [字节豆包] <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>N</mi> <mo>=</mo> <msubsup> <mi>p</mi> <mn>1</mn> <mrow data-mjx-texclass="ORD"> <msub> <mi>a</mi> <mn>1</mn> </msub> </mrow> </msubsup> <msubsup> <mi>p</mi> <mn>2</mn> <mrow data-mjx-texclass="ORD"> <msub> <mi>a</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>.</mo> <mo>.</mo> <mo>.</mo> <msubsup> <mi>p</mi> <mi>m</mi> <mrow(513点数解答 | 2026-01-25 09:47:27)23
- [DeepSeek] 题目描述 小明把 (n 为偶数)张牌按编号顺序 1,2,3,......n 排成一堆,然后开始洗牌。 一次洗牌的过程如下: 1. 对于一堆牌编号为 <math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> </math> ,首先将牌分成均匀的两堆:<math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>a</mi> <mrow data-mjx-texclass="ORD"> <mi>n</(810点数解答 | 2026-01-06 17:43:32)24
- [字节豆包] 题目描述 输出 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> <mo>!</mo> </math> 的不同因子的个数? 输入 一个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math> 输出 输出<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> <mo>!</mo> </math> 的因子个数 样例输入 复制 3 样例输出 复制 4 提示<math xmlns="http://www.w3.org/1998/Math/MathML"> <mn>1</mn> <mo><=</mo> <mi>n</mi> <mo><=</mo> <msup> <mn>10</mn> <mrow data-mjx-texclass="ORD"> <mn>5</mn> </mrow> <(731点数解答 | 2026-01-12 12:15:34)83
- [DeepSeek] 求 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo><=</mo> <mi>n</mi> <mo>≤</mo> <mn>12</mn> <mo stretchy="false">)</mo> </math> ,也就是 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo><=</mo> <mi>n</mi> <mo>≤</mo> <mn>12</mn> <mo stretchy="false">)</mo> </math> 。 阶乘可以用如下递归式描述: <math xmlns="http://www.w3.o(117点数解答 | 2026-01-05 17:44:02)33
- [DeepSeek] 题目描述 已知: <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>m</mi> <mo>=</mo> <mfrac> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>,</mo> <mi>b</(596点数解答 | 2025-12-28 17:00:58)33
- [DeepSeek] 已知 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>−</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>−</mo> <mn>2(443点数解答 | 2026-01-05 17:40:28)22
- [阿里通义] 题目描述 已知元素从小到大排列的两个数组x[]和y[],请写出一个程序算出两个数组彼此之间差的绝对值中最小的一个,这叫做数组的距离 输入 第一行为两个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>≤</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>≤</mo> <mn>1000</mn> <mo stretchy="false">)</mo> </math> ,分别代表数组f[], g[]的长度。 第二行有m个元素,为数组f[]。 第三行有n个元素,为数组g[]。 每个元素的数据范围在范围<math xmlns="http://www.w3.org/1998/Math/MathML"> <mo stretchy="false">[</mo> <mo>ȡ(801点数解答 | 2026-01-08 12:16:22)23
- [阿里通义] 题目描述 已知元素从小到大排列的两个数组x[]和y[],请写出一个程序算出两个数组彼此之间差的绝对值中最小的一个,这叫做数组的距离 输入 第一行为两个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>≤</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>≤</mo> <mn>1000</mn> <mo stretchy="false">)</mo> </math> ,分别代表数组f[], g[]的长度。 第二行有m个元素,为数组f[]。 第三行有n个元素,为数组g[]。 每个元素的数据范围在范围<math xmlns="http://www.w3.org/1998/Math/MathML"> <mo stretchy="false">[</mo> <mo>ȡ(632点数解答 | 2026-01-08 12:20:05)29
- [阿里通义] 题目描述 已知元素从小到大排列的两个数组x[]和y[],请写出一个程序算出两个数组彼此之间差的绝对值中最小的一个,这叫做数组的距离 输入 第一行为两个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>≤</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>≤</mo> <mn>1000</mn> <mo stretchy="false">)</mo> </math> ,分别代表数组f[], g[]的长度。 第二行有m个元素,为数组f[]。 第三行有n个元素,为数组g[]。 每个元素的数据范围在范围<math xmlns="http://www.w3.org/1998/Math/MathML"> <mo stretchy="false">[</mo> <mo>ȡ(445点数解答 | 2026-01-08 12:23:38)22
- [阿里通义] 题目描述 已知元素从小到大排列的两个数组x[]和y[],请写出一个程序算出两个数组彼此之间差的绝对值中最小的一个,这叫做数组的距离 输入 第一行为两个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>≤</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>≤</mo> <mn>1000</mn> <mo stretchy="false">)</mo> </math> ,分别代表数组f[], g[]的长度。 第二行有m个元素,为数组f[]。 第三行有n个元素,为数组g[]。 每个元素的数据范围在范围<math xmlns="http://www.w3.org/1998/Math/MathML"> <mo stretchy="false">[</mo> <mo>ȡ(918点数解答 | 2026-01-08 12:26:55)25
- [DeepSeek] 题目描述 通常,人们习惯将所有<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math> 位二进制串按照字典序排列,例如所有 2 位二进制串按字典序从小到大排列为:00,01,10,11。 格雷码(Gray Code)是一种特殊的 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math> 位二进制串排列法,它要求相邻的两个二进制串间**恰好**有一位**不同**,特别地,第一个串与最后一个串也算作相邻。 所有 2 位二进制串按格雷码排列的一个例子为:00,01,11,10。 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math>位格雷码不止一种,下面给出其中一种格雷码的生成算法: 1. 1 位格雷码由两个 1 位二进制串组成,顺序为:0,1。 2.<math xmlns="http://www.w3.org/1998/Mat(726点数解答 | 2026-01-13 12:31:37)31
- [DeepSeek] 我们把只包含素因子2、3和5的数成为丑数。例如6、8都是丑数,但14不是,因为它包含素因子7。 习惯上,我们把1当作是第一个丑数。 先定义一个判断丑数的函数,利用它输出1∼n之间所有的丑数,并统计出个数。 输入 读入一个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math><math xmlns="http://www.w3.org/1998/Math/MathML"> <mn>1</mn> <mo><=</mo> <mi>n</mi> <mo><=</mo> <mn>1000</mn> </math> , 输出 输出分为两部分: 第一部分,输出1∼ n之间所有的丑数,一行10个整数,每个整数占6个字符。 第二部分, 输出n 以内的丑数个数。 样例输入 复制 100 样例输出 复制 1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 (486点数解答 | 2026-01-12 17:51:47)78