题目描述 通常,人们习惯将所有<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math> 位二进制串按照字典序排列,例如所有 2 位二进制串按字典序从小到大排列为:00,01,10,11。 格雷码(Gray Code)是一种特殊的 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math> 位二进制串排列法,它要求相邻的两个二进制串间**恰好**有一位**不同**,特别地,第一个串与最后一个串也算作相邻。 所有 2 位二进制串按格雷码排列的一个例子为:00,01,11,10。 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math>位格雷码不止一种,下面给出其中一种格雷码的生成算法: 1. 1 位格雷码由两个 1 位二进制串组成,顺序为:0,1。 2.<math xmlns="http://www.w3.org/1998/Mat
题目要求根据给定的递归算法,求出 n 位格雷码中编号为 k 的二进制串。 格雷码的递归构造规则: 1. 1 位格雷码:0, 1(编号 0, 1)。 2. n+1 位格雷码: - 前 2^n 个:在 n 位格雷码的每个串前加 0(保持顺序)。 - 后 2^n 个:在 n 位格雷码的每个串前加 1(逆序)。 关键观察 设 n 位格雷码编号为 0 到 2^n - 1。 对于 n+1 位格雷码: - 编号 0 到 2^n - 1:第一位是 0,后面 n 位是 n 位格雷码的正序第 k 个。 - 编号 2^n 到 2^(n+1) - 1:第一位是 1,后面 n 位是 n 位格雷码的逆序第 (k - 2^n) 个。 逆序第 m 个(m = k - 2^n)在正序中的编号是 2^n - 1 - m。 推导公式 设 f(n, k) 表示 n 位格雷码中编号 k 对应的二进制串(长度为 n 的字符串)。 - 若 k < 2^(n-1):第一位是 '0',后面 n-1 位是 f(n-1, k)。 - 若 k >= 2^(n-1):第一位是 '1',后面 n-1 位是 f(n-1, 2^(n-1) - 1 - (k - 2^(n-1))) = f(n-1, 2^n - 1 - k)。 即: ``` if k < 2^(n-1): return '0' + f(n-1, k) else: return '1' + f(n-1, 2^n - 1 - k) ``` 边界:n=1 时,若 k=0 返回 "0",k=1 返回 "1"。 直接位运算方法 格雷码的另一种公式: 格雷码 g(k) = k XOR (k >> 1)。 对于 n 位,取 g(k) 的二进制表示(n 位,高位补零)。 验证 n=3, k=5: k=5 (101b) g = 5 XOR 2 = 7 (111b) 二进制 111 对应格雷码 111,与递归构造一致。 数据范围 n ≤ 64,k ≤ 2^63 - 1,用 64 位无符号整数存储。 实现 使用公式 g = k XOR (k >> 1),将结果转为 n 位二进制字符串。 代码 ```python def gray_code(n, k): # 计算格雷码编号 g = k ^ (k >> 1) # 转为 n 位二进制字符串 return format(g, f'0{n}b') # 示例 n = 3 k = 5 print(gray_code(n, k)) # 输出 111 ``` [2026-01-13 12:31:37 | AI问答 | 726点数解答]
- [DeepSeek] 题目描述 通常,人们习惯将所有<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math> 位二进制串按照字典序排列,例如所有 2 位二进制串按字典序从小到大排列为:00,01,10,11。 格雷码(Gray Code)是一种特殊的 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math> 位二进制串排列法,它要求相邻的两个二进制串间**恰好**有一位**不同**,特别地,第一个串与最后一个串也算作相邻。 所有 2 位二进制串按格雷码排列的一个例子为:00,01,11,10。 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math>位格雷码不止一种,下面给出其中一种格雷码的生成算法: 1. 1 位格雷码由两个 1 位二进制串组成,顺序为:0,1。 2.<math xmlns="http://www.w3.org/1998/Mat(726点数解答 | 2026-01-13 12:31:37)31
- [字节豆包] 题目描述 输出 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> <mo>!</mo> </math> 的不同因子的个数? 输入 一个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math> 输出 输出<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> <mo>!</mo> </math> 的因子个数 样例输入 复制 3 样例输出 复制 4 提示<math xmlns="http://www.w3.org/1998/Math/MathML"> <mn>1</mn> <mo><=</mo> <mi>n</mi> <mo><=</mo> <msup> <mn>10</mn> <mrow data-mjx-texclass="ORD"> <mn>5</mn> </mrow> <(731点数解答 | 2026-01-12 12:15:34)82
- [DeepSeek] 题目描述 已知: <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>m</mi> <mo>=</mo> <mfrac> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>,</mo> <mi>b</(596点数解答 | 2025-12-28 17:00:58)33
- [DeepSeek] 求 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo><=</mo> <mi>n</mi> <mo>≤</mo> <mn>12</mn> <mo stretchy="false">)</mo> </math> ,也就是 <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo><=</mo> <mi>n</mi> <mo>≤</mo> <mn>12</mn> <mo stretchy="false">)</mo> </math> 。 阶乘可以用如下递归式描述: <math xmlns="http://www.w3.o(117点数解答 | 2026-01-05 17:44:02)32
- [DeepSeek] 题目描述 小明把 (n 为偶数)张牌按编号顺序 1,2,3,......n 排成一堆,然后开始洗牌。 一次洗牌的过程如下: 1. 对于一堆牌编号为 <math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>a</mi> <mi>n</mi> </msub> </math> ,首先将牌分成均匀的两堆:<math xmlns="http://www.w3.org/1998/Math/MathML"> <msub> <mi>a</mi> <mrow data-mjx-texclass="ORD"> <mi>n</(810点数解答 | 2026-01-06 17:43:32)23
- [阿里通义] 题目描述 已知元素从小到大排列的两个数组x[]和y[],请写出一个程序算出两个数组彼此之间差的绝对值中最小的一个,这叫做数组的距离 输入 第一行为两个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>≤</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>≤</mo> <mn>1000</mn> <mo stretchy="false">)</mo> </math> ,分别代表数组f[], g[]的长度。 第二行有m个元素,为数组f[]。 第三行有n个元素,为数组g[]。 每个元素的数据范围在范围<math xmlns="http://www.w3.org/1998/Math/MathML"> <mo stretchy="false">[</mo> <mo>ȡ(801点数解答 | 2026-01-08 12:16:22)23
- [阿里通义] 题目描述 已知元素从小到大排列的两个数组x[]和y[],请写出一个程序算出两个数组彼此之间差的绝对值中最小的一个,这叫做数组的距离 输入 第一行为两个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>≤</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>≤</mo> <mn>1000</mn> <mo stretchy="false">)</mo> </math> ,分别代表数组f[], g[]的长度。 第二行有m个元素,为数组f[]。 第三行有n个元素,为数组g[]。 每个元素的数据范围在范围<math xmlns="http://www.w3.org/1998/Math/MathML"> <mo stretchy="false">[</mo> <mo>ȡ(632点数解答 | 2026-01-08 12:20:05)28
- [阿里通义] 题目描述 已知元素从小到大排列的两个数组x[]和y[],请写出一个程序算出两个数组彼此之间差的绝对值中最小的一个,这叫做数组的距离 输入 第一行为两个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>≤</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>≤</mo> <mn>1000</mn> <mo stretchy="false">)</mo> </math> ,分别代表数组f[], g[]的长度。 第二行有m个元素,为数组f[]。 第三行有n个元素,为数组g[]。 每个元素的数据范围在范围<math xmlns="http://www.w3.org/1998/Math/MathML"> <mo stretchy="false">[</mo> <mo>ȡ(445点数解答 | 2026-01-08 12:23:38)21
- [阿里通义] 题目描述 已知元素从小到大排列的两个数组x[]和y[],请写出一个程序算出两个数组彼此之间差的绝对值中最小的一个,这叫做数组的距离 输入 第一行为两个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>≤</mo> <mi>m</mi> <mo>,</mo> <mi>n</mi> <mo>≤</mo> <mn>1000</mn> <mo stretchy="false">)</mo> </math> ,分别代表数组f[], g[]的长度。 第二行有m个元素,为数组f[]。 第三行有n个元素,为数组g[]。 每个元素的数据范围在范围<math xmlns="http://www.w3.org/1998/Math/MathML"> <mo stretchy="false">[</mo> <mo>ȡ(918点数解答 | 2026-01-08 12:26:55)24
- [字节豆包] <math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>N</mi> <mo>=</mo> <msubsup> <mi>p</mi> <mn>1</mn> <mrow data-mjx-texclass="ORD"> <msub> <mi>a</mi> <mn>1</mn> </msub> </mrow> </msubsup> <msubsup> <mi>p</mi> <mn>2</mn> <mrow data-mjx-texclass="ORD"> <msub> <mi>a</mi> <mn>2</mn> </msub> </mrow> </msubsup> <mo>.</mo> <mo>.</mo> <mo>.</mo> <msubsup> <mi>p</mi> <mi>m</mi> <mrow(513点数解答 | 2026-01-25 09:47:27)22
- [DeepSeek] 我们把只包含素因子2、3和5的数成为丑数。例如6、8都是丑数,但14不是,因为它包含素因子7。 习惯上,我们把1当作是第一个丑数。 先定义一个判断丑数的函数,利用它输出1∼n之间所有的丑数,并统计出个数。 输入 读入一个整数<math xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math><math xmlns="http://www.w3.org/1998/Math/MathML"> <mn>1</mn> <mo><=</mo> <mi>n</mi> <mo><=</mo> <mn>1000</mn> </math> , 输出 输出分为两部分: 第一部分,输出1∼ n之间所有的丑数,一行10个整数,每个整数占6个字符。 第二部分, 输出n 以内的丑数个数。 样例输入 复制 100 样例输出 复制 1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 (486点数解答 | 2026-01-12 17:51:47)77
- [DeepSeek] 通常,人们习惯将所有 位二进制串按照字典序排列,例如所有 2 位二进制串按字典序从小到大排列为:00,01,10,11。 格雷码(Gray Code)是一种特殊的 位二进制串排列法,它要求相邻的两个二进制串间**恰好**有一位**不同**,特别地,第一个串与最后一个串也算作相邻。 所有 2 位二进制串按格雷码排列的一个例子为:00,01,11,10。 位格雷码不止一种,下面给出其中一种格雷码的生成算法: 1. 1 位格雷码由两个 1 位二进制串组成,顺序为:0,1。 2. 位格雷码的前 个二进制串,可以由依此算法生成的 位格雷码(总共 个 位二进制串)按**顺序**排列,再在每个串前加一个前缀 0 构成。 3. 位格雷码的后 个二进制串,可以由依此算法生成的 位格雷码(总共 个 位二进制串)按**逆序**排列,再在每个串前加一个前缀 1 构成。 综上, 位格雷码,由 位格雷码的 个二进制串按顺序排列再加前缀 0,和按逆序排列再加前缀 1 构成,共 个二进制串。另外,对于 位格雷码中的 个 二进制串,我们按上(443点数解答 | 2026-01-05 12:21:49)26