题目描述 N N 进制数指的是逢 N N 进一的计数制。例如,人们日常生活中大多使用十进制计数,而计算机底层则一般使用二进制。除此之外,八进制和十六进制在一些场合也是常用的计数制(十六进制中,一般使用字母 A 至 F 表示十至十五;本题中,十一进制到十五进制也是类似的)。 在本题中,我们将给出 个不同进制的数。你需要分别把它们转换成十进制数。 输入格式 输入的第一行为一个十进制表示的整数 N N。接下来 N N 行,每行一个整数 K K,随后是一个空格,紧接着是一个 K K 进制数,表示需要转换的数。保证所有 K K 进制数均由数字和大写字母组成,且不以 0 0 开头。保证 K K 进制数合法。 保证 N ≤ 1000 N≤1000;保证 2 ≤ K ≤ 16 2≤K≤16。 保证所有 K K 进制数的位数不超过 9 9。 输出格式 输出 N N 行,每一个十进制数,表示对应 K K 进制数的十进制数值。
以下是使用 Python 实现将不同进制数转换为十进制数的代码: ```python # 读取输入的行数 N N = int(input()) # 循环处理每一行输入 for _ in range(N): # 读取当前行,按空格分割得到进制 K 和 K 进制数 K, num = input().split() K = int(K) # 使用 Python 内置函数 int() 将 K 进制数转换为十进制数 decimal_num = int(num, K) # 输出转换后的十进制数 print(decimal_num) ``` 代码解释 1. 读取输入的行数 `N`:使用 `int(input())` 读取第一行输入,并将其转换为整数。 2. 循环处理每一行输入:使用 `for` 循环 `N` 次,每次读取一行输入。 3. 分割输入:使用 `split()` 方法按空格分割当前行,得到进制 `K` 和 `K` 进制数 `num`。 4. 转换进制:使用 Python 内置函数 `int(num, K)` 将 `K` 进制数 `num` 转换为十进制数。 5. 输出结果:使用 `print()` 函数输出转换后的十进制数。 复杂度分析 - 时间复杂度:$O(N)$,其中 $N$ 是输入的行数。 - 空间复杂度:$O(1)$,只使用了常数级的额外空间。 [2026-01-02 19:45:07 | AI问答 | 336点数解答]
相关提问
- [字节豆包] 题目描述 N N 进制数指的是逢 N N 进一的计数制。例如,人们日常生活中大多使用十进制计数,而计算机底层则一般使用二进制。除此之外,八进制和十六进制在一些场合也是常用的计数制(十六进制中,一般使用字母 A 至 F 表示十至十五)。 现在有N个数,请你分别判断他们是否可能是二进制、八进制、十进制、十六进制。例如,15A6F 就只可能是十六进制,而 1011 则是四种进制皆有可能。 输入格式 输入的第一行为一个十进制表示的整数 N N。接下来 N N 行,每行一个字符串,表示需要判断的数。保证所有字符串均由数字和大写字母组成,可能以 0 0 开头。保证不会出现空行。 保证 1 ≤ N ≤ 1000 1≤N≤1000,保证所有字符串长度不超过 10 10。 输出格式 输出 N N 行,每行 4 4 个数,用空格隔开,分别表示给定的字符串是否可能表示一个二进制数、八进制数、十进制数、十六进制数。使用 1 1 表示可能,使用 0 0 表示不可能。 例如,对于只可能是十六进制数的 15A6F,就需要输出 0 0 0 1;而对于四者皆有可能的 1011,则需要输出 (405点数解答 | 2026-01-02 19:43:33)28
- [字节豆包] 题目描述c++ N 进制数指的是逢 N 进一的计数制。例如,人们日常生活中大多使用十进制计数,而计算机底层则一般使用二进制。除此之外,八进制和十六进制在一些场合也是常用的计数制(十六进制中,一般使用字母 A 至 F 表示十至十五)。 现在有N个数,请你分别判断他们是否可能是二进制、八进制、十进制、十六进制。例如,15A6F 就只可能是十六进制,而 1011 则是四种进制皆有可能。 输入格式 输入的第一行为一个十进制表示的整数 N。接下来 N 行,每行一个字符串,表示需要判断的数。保证所有字符串均由数字和大写字母组成,可能以 0 开头。保证不会出现空行。 保证 1≤N≤1000,保证所有字符串长度不超过 10。 输出格式 输出 N 行,每行 4 个数,用空格隔开,分别表示给定的字符串是否可能表示一个二进制数、八进制数、十进制数、十六进制数。使用 1 表示可能,使用 0 表示不可能。 例如,对于只可能是十六进制数的 15A6F,就需要输出 0 0 0 1;而对于四者皆有可能的 1011,则需要输出 1 1 1 1。(812点数解答 | 2026-01-02 19:28:20)30
- [字节豆包] 题目描述 N 进制数指的是逢 N 进一的计数制。例如,人们日常生活中大多使用十进制计数,而计算机底层则一般使用二进制。除此之外,八进制和十六进制在一些场合也是常用的计数制(十六进制中,一般使用字母 A 至 F 表示十至十五)。 现在有N个数,请你分别判断他们是否可能是二进制、八进制、十进制、十六进制。例如,15A6F 就只可能是十六进制,而 1011 则是四种进制皆有可能。 输入格式 输入的第一行为一个十进制表示的整数 N。接下来 N 行,每行一个字符串,表示需要判断的数。保证所有字符串均由数字和大写字母组成,可能以 0 开头。保证不会出现空行。 保证 1≤N≤1000,保证所有字符串长度不超过 10。 输出格式 输出 N 行,每行 4 个数,用空格隔开,分别表示给定的字符串是否可能表示一个二进制数、八进制数、十进制数、十六进制数。使用 1 表示可能,使用 0 表示不可能。 例如,对于只可能是十六进制数的 15A6F,就需要输出 0 0 0 1;而对于四者皆有可能的 1011,则需要输出 1 1 1 1。(251点数解答 | 2026-01-02 19:44:35)32
- [字节豆包] 题目描述 N N 进制数指的是逢 N N 进一的计数制。例如,人们日常生活中大多使用十进制计数,而计算机底层则一般使用二进制。除此之外,八进制和十六进制在一些场合也是常用的计数制(十六进制中,一般使用字母 A 至 F 表示十至十五;本题中,十一进制到十五进制也是类似的)。 在本题中,我们将给出 个不同进制的数。你需要分别把它们转换成十进制数。 输入格式 输入的第一行为一个十进制表示的整数 N N。接下来 N N 行,每行一个整数 K K,随后是一个空格,紧接着是一个 K K 进制数,表示需要转换的数。保证所有 K K 进制数均由数字和大写字母组成,且不以 0 0 开头。保证 K K 进制数合法。 保证 N ≤ 1000 N≤1000;保证 2 ≤ K ≤ 16 2≤K≤16。 保证所有 K K 进制数的位数不超过 9 9。 输出格式 输出 N N 行,每一个十进制数,表示对应 K K 进制数的十进制数值。(336点数解答 | 2026-01-02 19:45:07)29
- [DeepSeek] 们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置为指数,以 为底数的幂之和的形式。例如 可表示为 这样的形式。 与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置为指数,以 为底数的幂之和的形式。 一般说来,任何一个正整数 或一个负整数 都可以被选来作为一个数制系统的基数。如果是以 或 为基数,则需要用到的数码为 。 例如当 时,所需用到的数码是 ,这与其是 或 无关。如果作为基数的数绝对值超过 ,则为了表示这些数码,通常使用英文字母来表示那些大于 的数码。例如对 进制数来说,用 表示 ,用 表示 ,用 表示 ,以此类推。 在负进制数中是用 作为基数,例如 (十进制)相当于 ( 进制),并且它可以被表示为 的幂级数的和数: 设计一个程序,读入一个十进制数和一个负进制数的基数, 并将此十进制数转换为此负进制下的数。 输入 输入的每行有两个输入数据。 第一个是十进制数 。 第二个是负进制数的基数 。 输出 输出此负进(490点数解答 | 2026-01-20 17:31:14)19
- [字节豆包] 题目(description): 卫星导航系统(如我国自主研发的北斗卫星导航系统)能实时获取位置、速度、时间等时空信息,在交通运输、农林渔业、气象测报、通信授时、救灾减灾、公共安全等领域都得到了广泛应用。 在应用层面,卫星导航系统一般以报文方式进行数据传输,其中$gprmc是常用报文之一,基本的格式如下: $gprmc,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh <1> utc时间,hhmmss.sss(时分秒.毫秒)格式 <2> 定位状态,a=有效定位,v=无效定位 <3> 纬度ddmm.mmmm(度分)格式 <4> 纬度半球n(北半球)或s(南半球) <5> 经度dddmm.mmmm(度分)格式 <6> 经度半球e(东经)或w(西经) <7> 地面速率(000.0~999.9节) <8> 地面航向(000.0~359.9度,以正北为参考基准) <9> utc日期,ddmmyy(日月年)格式 <10> 磁偏角(000.0~180.0度,前面的0也(385点数解答 | 2025-01-08 03:43:54)429
- [字节豆包] 题目(description): 卫星导航系统(如我国自主研发的北斗卫星导航系统)能实时获取位置、速度、时间等时空信息,在交通运输、农林渔业、气象测报、通信授时、救灾减灾、公共安全等领域都得到了广泛应用。 在应用层面,卫星导航系统一般以报文方式进行数据传输,其中$gprmc是常用报文之一,基本的格式如下: $gprmc,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh <1> utc时间,hhmmss.sss(时分秒.毫秒)格式 <2> 定位状态,a=有效定位,v=无效定位 <3> 纬度ddmm.mmmm(度分)格式 <4> 纬度半球n(北半球)或s(南半球) <5> 经度dddmm.mmmm(度分)格式 <6> 经度半球e(东经)或w(西经) <7> 地面速率(000.0~999.9节) <8> 地面航向(000.0~359.9度,以正北为参考基准) <9> utc日期,ddmmyy(日月年)格式 <10> 磁偏角(000.0~180.0度,前面的0也(346点数解答 | 2025-01-08 03:46:29)425
- [字节豆包] 提示信息: 密码锁:由 n 个从左到右并排的圆环组成,每个圆环上都有 10 个数字(0~9),蓝色框内为密码显示区,每个圆环在密码显示区只能显示一个数字,如图所示。可以拨动圆环,来改变密码显示区显示的数字。 当密码显示区的数字与密码一致时,密码锁就会被打开。 image 编程实现: 有一个由 n 个圆环组成的密码锁,和一个 n 位的密码 S(S 由 1~9 中的数字(包含 1 和 9)组成)。每次操作只能选择一个或位置连续的多个圆环拨动。当 S 中的字符从左到右依次显示在密码显示区时,密码锁会被打开。 已知每个圆环在密码显示区初始数字都为 0,请计算最少需要操作多少次,才能打开密码锁。 注意: 1、如果选择了其中一个圆环,可将该圆环中任意一个数字拨动到密码显示区,表示 1 次操作; 例如:将第 3 个圆环拨动到数字 4,表示 1 次操作: image 2、如果选择了位置连续的多个圆环,只能将这些圆环拨动成同一个数字,显示在密码显示区,表示 1 次操作。 例如:将连续的第 2 个到第 3 个圆环都拨动到数字 5,表示 1 次操作: image 例如: n = 5,S (377点数解答 | 2025-11-08 22:11:16)88
- [字节豆包] 提示信息: 密码锁:由 n 个从左到右并排的圆环组成,每个圆环上都有 10 个数字(0~9),蓝色框内为密码显示区,每个圆环在密码显示区只能显示一个数字,如图所示。可以拨动圆环,来改变密码显示区显示的数字。 当密码显示区的数字与密码一致时,密码锁就会被打开。 image 编程实现: 有一个由 n 个圆环组成的密码锁,和一个 n 位的密码 S(S 由 1~9 中的数字(包含 1 和 9)组成)。每次操作只能选择一个或位置连续的多个圆环拨动。当 S 中的字符从左到右依次显示在密码显示区时,密码锁会被打开。 已知每个圆环在密码显示区初始数字都为 0,请计算最少需要操作多少次,才能打开密码锁。 注意: 1、如果选择了其中一个圆环,可将该圆环中任意一个数字拨动到密码显示区,表示 1 次操作; 例如:将第 3 个圆环拨动到数字 4,表示 1 次操作: image 2、如果选择了位置连续的多个圆环,只能将这些圆环拨动成同一个数字,显示在密码显示区,表示 1 次操作。 例如:将连续的第 2 个到第 3 个圆环都拨动到数字 5,表示 1 次操作: image 例如: n = 5,S (163点数解答 | 2025-11-15 21:22:40)79
- [DeepSeek] 在学习了进制转换后, 𝑇 𝐽 老师提出一个问题: 𝑛 ! 转换成 𝑃 进制后,末尾会有多少零呢? 比如: 10 ! = 1 ∗ 2 ∗ . . . ∗ 10 = ( 3628800 ) 10 = ( 156574400 ) 8 = ( 1101110101111100000000 ) 2 = ( 375 𝐹 00 ) 16 10 ! 表示成十进制、八进制,未尾都有 2 个零; 10 ! 表示成二进制未尾有 8 个零。 请你编程计算 𝑛 ! 表示 𝑃 进制后末尾零的个数? 输入 一行,两个用空格隔开的整数 𝑛 , 𝑝 . 输出 一行,一个整数,表示零的个数。 样例输入 复制 10 2 样例输出 复制 8 提示 对于20%数据, 𝑝 = 10 。 对于100%数据, 2 ≤ 𝑛 ≤ 100000 , 2 ≤ 𝑝 ≤ 100000(549点数解答 | 2026-01-11 17:49:54)25
- [字节豆包] 题目描述 给定只由 6 种括号字符组成的字符串:(, ), [, ], {, }。判断每个字符串是否为“合法括号序列”, 合法则输出 YES,否则输出 NO。合法括号序列的定义: 空串合法; 若 A 合法,则 (A), [A], {A} 均合法; 若 A 与 B 均合法,则 AB 合法。 输入格式 第一行一个整数 T,表示数据组数。接下来 T 行,每行一个只包含上述 6 种字符的字符串。 输出格式 对于每个字符串,输出一行: 若其为合法括号序列,输出 YES; 否则输出 NO。 输入输出样例 输入 1 ()[]{} 输出 YES 输入 6 () ([)] ([]){} (((( {[()()]} }{ 输出 YES NO YES NO YES NO 说明/提示 记单串长度记为 ∣S∣。测试数据满足 1≤∣S∣≤106,1≤T≤2×105,同一输入文件内总长度 ∑∣S∣≤2×106,字符串只包含字符 ()[]{}。 用c++语言(339点数解答 | 2025-12-03 18:22:21)55
- [字节豆包] 题目描述 给定只由 6 种括号字符组成的字符串:(, ), [, ], {, }。判断每个字符串是否为“合法括号序列”, 合法则输出 YES,否则输出 NO。合法括号序列的定义: 空串合法; 若 A 合法,则 (A), [A], {A} 均合法; 若 A 与 B 均合法,则 AB 合法。 输入格式 第一行一个整数 T,表示数据组数。接下来 T 行,每行一个只包含上述 6 种字符的字符串。 输出格式 对于每个字符串,输出一行: 若其为合法括号序列,输出 YES; 否则输出 NO。 输入输出样例 输入 1 ()[]{} 输出 YES 输入 6 () ([)] ([]){} (((( {[()()]} }{ 输出 YES NO YES NO YES NO 说明/提示 记单串长度记为 ∣S∣。测试数据满足 1≤∣S∣≤106,1≤T≤2×105,同一输入文件内总长度 ∑∣S∣≤2×106,字符串只包含字符 ()[]{}。 用c++语言(532点数解答 | 2025-12-04 18:04:18)48