题目描述 顽皮的小明发现,下楼梯时每步可以走 1 个台阶、 2 个台阶或 3 个台阶。现在一共有 N N 个台阶,你能帮小明算算有多少种方案吗? 输入格式 输入一行,包含一个整数 N N。 输出格式 输出一行一个整数表示答案。
这是一个典型的动态规划问题。设 `dp[i]` 表示走到第 `i` 个台阶的方案数。 对于第 `i` 个台阶,小明可以从第 `i - 1` 个台阶走 1 步到达,也可以从第 `i - 2` 个台阶走 2 步到达,还可以从第 `i - 3` 个台阶走 3 步到达。所以状态转移方程为:`dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]`。 以下是使用 Python 实现的代码: ```python # 读取输入的台阶数 n = int(input()) # 初始化 dp 数组 dp = [0] * (n + 1) # 初始化边界条件 if n >= 0: dp[0] = 1 # 站在第 0 个台阶有一种方案,即不移动 if n >= 1: dp[1] = 1 # 走到第 1 个台阶只有一种方案,走 1 步 if n >= 2: dp[2] = 2 # 走到第 2 个台阶有两种方案,走两个 1 步或走一个 2 步 # 动态规划计算 dp 数组 for i in range(3, n + 1): dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3] # 输出结果 print(dp[n]) ``` 复杂度分析 - 时间复杂度:代码中有一个循环从 3 到 `n`,因此时间复杂度为 $O(n)$。 - 空间复杂度:使用了一个长度为 `n + 1` 的数组 `dp` 来保存中间结果,因此空间复杂度为 $O(n)$。 [2026-01-10 20:37:23 | AI问答 | 429点数解答]
相关提问
- [字节豆包] 题目(description): 卫星导航系统(如我国自主研发的北斗卫星导航系统)能实时获取位置、速度、时间等时空信息,在交通运输、农林渔业、气象测报、通信授时、救灾减灾、公共安全等领域都得到了广泛应用。 在应用层面,卫星导航系统一般以报文方式进行数据传输,其中$gprmc是常用报文之一,基本的格式如下: $gprmc,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh <1> utc时间,hhmmss.sss(时分秒.毫秒)格式 <2> 定位状态,a=有效定位,v=无效定位 <3> 纬度ddmm.mmmm(度分)格式 <4> 纬度半球n(北半球)或s(南半球) <5> 经度dddmm.mmmm(度分)格式 <6> 经度半球e(东经)或w(西经) <7> 地面速率(000.0~999.9节) <8> 地面航向(000.0~359.9度,以正北为参考基准) <9> utc日期,ddmmyy(日月年)格式 <10> 磁偏角(000.0~180.0度,前面的0也(385点数解答 | 2025-01-08 03:43:54)433
- [字节豆包] 题目(description): 卫星导航系统(如我国自主研发的北斗卫星导航系统)能实时获取位置、速度、时间等时空信息,在交通运输、农林渔业、气象测报、通信授时、救灾减灾、公共安全等领域都得到了广泛应用。 在应用层面,卫星导航系统一般以报文方式进行数据传输,其中$gprmc是常用报文之一,基本的格式如下: $gprmc,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh <1> utc时间,hhmmss.sss(时分秒.毫秒)格式 <2> 定位状态,a=有效定位,v=无效定位 <3> 纬度ddmm.mmmm(度分)格式 <4> 纬度半球n(北半球)或s(南半球) <5> 经度dddmm.mmmm(度分)格式 <6> 经度半球e(东经)或w(西经) <7> 地面速率(000.0~999.9节) <8> 地面航向(000.0~359.9度,以正北为参考基准) <9> utc日期,ddmmyy(日月年)格式 <10> 磁偏角(000.0~180.0度,前面的0也(346点数解答 | 2025-01-08 03:46:29)428
- [字节豆包] pandas读取文件,文件某一列分组,条件为列数据字段中包含“一级”为一组,没有“一级”的为一组,将pandas读取到的文件按地市映射表分为各地市文件,再将这个文件当作邮件附件,邮件正文为某地市,有“一级”多少,没有“一级”多少,语言方向:Python,系统环境:Windows(459点数解答 | 2024-12-25 01:17:06)244
- [字节豆包] 题目描述 在甜甜圈王国中,每颗甜甜圈都有一个甜度值 S 来衡量其甜蜜程度。根据甜度的不同,甜甜圈被评定为不同的等级,具体规则如下: 如果 S 在 0 到 25 之间(包含 0 和 25 ),输出 "普通甜甜圈"; 如果 S 在 26 到 50 之间(包含 26 和 50 ),输出 "美味甜甜圈"; 如果 S 在 51 到 75 之间(包含 51 和 75 ),输出 "极品甜甜圈"; 如果 S 在 76 到 99 之间(包含 76 和 99 ),输出 "绝世甜甜圈"; 如果 S 等于 100 ,输出 "传说甜甜圈"。 请根据给定的甜度值 S,输出对应的甜甜圈等级名称。 输入格式 一行一个整数 S,表示甜甜圈的甜度值。(243点数解答 | 2025-12-06 18:35:50)61
- [百度文心] c++描述 一天,一个画家在森林里写生,突然爆发了山洪,他需要尽快返回住所中,那里是安全的。 森林的地图由R行C列组成,空白区域用点“.”表示,洪水的区域用“*”表示,而岩石用“X”表示,另画家的住所用“D”表示,画家用“S”表示。 有以下几点需要说明: 1.每一分钟画家能向四个方向移动一格(上、下、左、右)。 2.每一分钟洪水能蔓延到四个方向的相邻格子(空白区域)。 3.洪水和画家都不能通过岩石区域。 4.画家不能通过洪水区域(同时也不行,即画家不能移到某个格子,该格子在画家达到的同时被洪水蔓延到了,这也是不允许的)。 5. 洪水蔓不到画家的住所。 给你森林的地图,编写程序输出最少需要花费多长时间才能从开始的位置赶回家中。 输入描述 输入第一行包含两个整数R和C(R,C<=50)。 接下来R行每行包含C个字符(“.”、“*”、“X”、“D”或“S”)。 地图保证只有一个“D”和一个“S”。 输出描述 输出画家最快安全到达住所所需的时间,如果画家不可能安全回家则输出“KAKTUS”。 用例输入 1 3 3 D.* ... .S. 用例输出 1 (1384点数解答 | 2025-03-16 17:33:49)378
- [字节豆包] 提示信息: 密码锁:由 n 个从左到右并排的圆环组成,每个圆环上都有 10 个数字(0~9),蓝色框内为密码显示区,每个圆环在密码显示区只能显示一个数字,如图所示。可以拨动圆环,来改变密码显示区显示的数字。 当密码显示区的数字与密码一致时,密码锁就会被打开。 image 编程实现: 有一个由 n 个圆环组成的密码锁,和一个 n 位的密码 S(S 由 1~9 中的数字(包含 1 和 9)组成)。每次操作只能选择一个或位置连续的多个圆环拨动。当 S 中的字符从左到右依次显示在密码显示区时,密码锁会被打开。 已知每个圆环在密码显示区初始数字都为 0,请计算最少需要操作多少次,才能打开密码锁。 注意: 1、如果选择了其中一个圆环,可将该圆环中任意一个数字拨动到密码显示区,表示 1 次操作; 例如:将第 3 个圆环拨动到数字 4,表示 1 次操作: image 2、如果选择了位置连续的多个圆环,只能将这些圆环拨动成同一个数字,显示在密码显示区,表示 1 次操作。 例如:将连续的第 2 个到第 3 个圆环都拨动到数字 5,表示 1 次操作: image 例如: n = 5,S (377点数解答 | 2025-11-08 22:11:16)91
- [字节豆包] 提示信息: 密码锁:由 n 个从左到右并排的圆环组成,每个圆环上都有 10 个数字(0~9),蓝色框内为密码显示区,每个圆环在密码显示区只能显示一个数字,如图所示。可以拨动圆环,来改变密码显示区显示的数字。 当密码显示区的数字与密码一致时,密码锁就会被打开。 image 编程实现: 有一个由 n 个圆环组成的密码锁,和一个 n 位的密码 S(S 由 1~9 中的数字(包含 1 和 9)组成)。每次操作只能选择一个或位置连续的多个圆环拨动。当 S 中的字符从左到右依次显示在密码显示区时,密码锁会被打开。 已知每个圆环在密码显示区初始数字都为 0,请计算最少需要操作多少次,才能打开密码锁。 注意: 1、如果选择了其中一个圆环,可将该圆环中任意一个数字拨动到密码显示区,表示 1 次操作; 例如:将第 3 个圆环拨动到数字 4,表示 1 次操作: image 2、如果选择了位置连续的多个圆环,只能将这些圆环拨动成同一个数字,显示在密码显示区,表示 1 次操作。 例如:将连续的第 2 个到第 3 个圆环都拨动到数字 5,表示 1 次操作: image 例如: n = 5,S (163点数解答 | 2025-11-15 21:22:40)82
- [字节豆包] 有一个由 n 个圆环组成的密码锁,和一个 n 位的密码 S(S 由 1~9 中的数字(包含 1 和 9)组成)。每次操作只能选择一个或位置连续的多个圆环拨动。当 S 中的字符从左到右依次显示在密码显示区时,密码锁会被打开。 已知每个圆环在密码显示区初始数字都为 0,请计算最少需要操作多少次,才能打开密码锁。 注意: 1、如果选择了其中一个圆环,可将该圆环中任意一个数字拨动到密码显示区,表示 1 次操作; 例如:将第 3 个圆环拨动到数字 4,表示 1 次操作: image 2、如果选择了位置连续的多个圆环,只能将这些圆环拨动成同一个数字,显示在密码显示区,表示 1 次操作。 例如:将连续的第 2 个到第 3 个圆环都拨动到数字 5,表示 1 次操作: image 例如: n = 5,S = "12321";分别表示 5 个圆环组成的密码锁和密码 12321;将 5 位密码 1、2、3、2、1 从左到右依次显示在密码显示区,以下是操作次数最少的方案: 第一次操作,将 5 个初始状态为 0 的圆环全部拨动到数字 1: image 第二次操作,将第 2 个到第 4 个圆(535点数解答 | 2026-02-06 19:44:08)4
- [字节豆包] 有一个由 n 个圆环组成的密码锁,和一个 n 位的密码 S(S 由 1~9 中的数字(包含 1 和 9)组成)。每次操作只能选择一个或位置连续的多个圆环拨动。当 S 中的字符从左到右依次显示在密码显示区时,密码锁会被打开。 已知每个圆环在密码显示区初始数字都为 0,请计算最少需要操作多少次,才能打开密码锁。 注意: 1、如果选择了其中一个圆环,可将该圆环中任意一个数字拨动到密码显示区,表示 1 次操作; 例如:将第 3 个圆环拨动到数字 4,表示 1 次操作: image 2、如果选择了位置连续的多个圆环,只能将这些圆环拨动成同一个数字,显示在密码显示区,表示 1 次操作。 例如:将连续的第 2 个到第 3 个圆环都拨动到数字 5,表示 1 次操作: image 例如: n = 5,S = "12321";分别表示 5 个圆环组成的密码锁和密码 12321;将 5 位密码 1、2、3、2、1 从左到右依次显示在密码显示区,以下是操作次数最少的方案: 第一次操作,将 5 个初始状态为 0 的圆环全部拨动到数字 1: image 第二次操作,将第 2 个到第 4 个圆(279点数解答 | 2026-02-06 19:45:27)3
- [字节豆包] c++ 题目:混合类型数据格式化输入输出 描述:顺序读入浮点数1、整数、字符、浮点数2,其间以1个空格作为分隔符。再按照字符、整数、浮点数1、浮点数2的顺序输出,其中浮点数保留小数点后2位。 输入样例 3.14 100 a 2.71↙ 输出样例 a 100 3.14 2.71↙(187点数解答 | 2024-10-16 14:31:08)355
- [字节豆包] c语言 题目:混合类型数据格式化输入输出 描述:顺序读入浮点数1、整数、字符、浮点数2,其间以1个空格作为分隔符。再按照字符、整数、浮点数1、浮点数2的顺序输出,其中浮点数保留小数点后2位。 输入样例 3.14 100 a 2.71↙ 输出样例 a 100 3.14 2.71↙(159点数解答 | 2024-10-16 14:32:18)354
- [阿里通义] 一个 5×6 的迷宫样例如下: 要求给出从起点(1,1)到终点(3,4)的路径。 为了处理方便,保证最外圈全都为障碍物。 扩展到一般情况,一个 m×n 的迷宫,要求输出从起点(1,1)到终点(m-2,n-2)的路径。 测试实例保证路径是唯一的。 该题要求自行设计一个栈来做。如果设计的是顺序栈,则保证栈的大小不超过 200 个元素。 输入 第一行为两个整数 m 和 n,表示 m×n 的迷宫。 接下来有 m 行,每行有 n 个数(n 个数之间用空格间隔,值 = 0 表示可以通行,值 = 1 表示为障碍物) 输出 输出从起点到终点的路径,每个坐标占一行,坐标间的行号和列号用一个空格间隔。具体格式可参考样例。c++ 源代码(732点数解答 | 2024-11-03 02:34:53)500