长为100mm,宽为10mm,厚度为1mm的薄板左端面固定,右端面上半部作用均布载荷10n/mm*mm,已知弹性模量为100gpa,泊松比为0。采用三角形单元划分网格,编写matlab有限元计算程序。求距离右端面50mm横截面上的应力与位移分布;


以下是一个简单的 MATLAB 有限元计算程序示例,用于解决您描述的问题: ```matlab % 定义问题参数 L = 100; % 长度(mm) W = 10; % 宽度(mm) T = 1; % 厚度(mm) E = 100e9; % 弹性模量(Pa) v = 0; % 泊松比 % 定义网格参数 num_elements = 10; % 三角形单元数量 % 计算单元尺寸 element_size = L / num_elements; % 初始化节点坐标和单元连接 node_coords = zeros(num_elements + 1, 2); for i = 1 : num_elements + 1 node_coords(i, 1) = (i - 1) * element_size; node_coords(i, 2) = 0; end element_connectivity = zeros(num_elements, 3); for i = 1 : num_elements element_connectivity(i, 1) = i; element_connectivity(i, 2) = i + 1; element_connectivity(i, 3) = num_elements + 1; end % 计算刚度矩阵和载荷向量 K = zeros(2 * (num_elements + 1), 2 * (num_elements + 1)); F = zeros(2 * (num_elements + 1), 1); for e = 1 : num_elements % 计算单元刚度矩阵 k_e = [ [1/2 -1/2 -1/2 1/2]; [-1/2 1/2 1/2 -1/2]; [-1/2 1/2 1/2 -1/2]; [1/2 -1/2 -1/2 1/2] ] * E * T / (2 * element_size); % 组装刚度矩阵 node_indices = element_connectivity(e, :); for i = 1 : 3 for j = 1 : 3 K(2 * node_indices(i) - 1 : 2 * node_indices(i), 2 * node_indices(j) - 1 : 2 * node_indices(j)) =... K(2 * node_indices(i) - 1 : 2 * node_indices(i), 2 * node_indices(j) - 1 : 2 * node_indices(j)) + k_e(2 * i - 1 : 2 * i, 2 * j - 1 : 2 * j); end end % 计算单元载荷向量 if e <= num_elements / 2 f_e = [0; 10 * element_size / 2]; else f_e = [0; 0]; end % 组装载荷向量 for i = 1 : 3 F(2 * node_indices(i) - 1 : 2 * node_indices(i)) = F(2 * node_indices(i) - 1 : 2 * node_indices(i)) + f_e(2 * i - 1 : 2 * i); end end % 处理边界条件 K(1:2, :) = 0; K(:, 1:2) = 0; K(1, 1) = 1; K(2, 2) = 1; F(1:2) = 0; % 求解位移 U = K \ F; % 提取横截面上的位移和应力 cross_section_index = round((L - 50) / element_size) + 1; cross_section_displacements = U(2 * cross_section_index - 1 : 2 * cross_section_index); cross_section_stresses = E / (1 - v^2) * [1 v 0; v 1 0; 0 0 (1 - v) / 2] * [U(2 * cross_section_index - 1); U(2 * cross_section_index); 0]; disp('距离右端面 50mm 横截面上的位移:'); disp(cross_section_displacements); disp('距离右端面 50mm 横截面上的应力:'); disp(cross_section_stresses); % 额外注意点 1. 增加单元数量可提高计算精度。 2. 检查边界条件的处理是否符合实际情况。 3. 注意载荷的施加方式和大小是否合理。 ``` [2025-01-06 09:15:24 | AI写代码神器 | 1041点数解答]
- 长为 100mm ,宽为 10mm ,厚度为 1mm 的薄板左端面固定,右端面上半部作用均布载荷 10n/mm*mm ,已知弹性模量为 100gpa ,泊松比为 0 。采用三角形单元划分网格,编写 matlab 有限元计算程序。求距离右端面 50mm 横截面上的应力与位移分布,并做出云图(537点数解答 | 2025-01-06 19:33:24)125
- 题目描述 现有三条边长 a , b , c a,b,c,编写程序判断三条边能否构成三角形,若能构成三角形,则继续判断能否构成等腰三角形,等边三角形。 任意两边之和大于第三边才能构成三角形, 等腰三角形:至少有两条边相等的三角形 等边三角形:三条边都相等的三角形 输入格式 一行,三个正整数 a , b , c a,b,c 依次表示三条边的长度。 输出格式 输出对应的判断结果: 若能构成三角形,单独使用一行输出“三角形” 若能构成等腰三角形,单独使用一行输出“等腰三角形” 若能构成等边三角形,单独使用一行输出“等边三角形” 若无法构成三角形,输出 “No” input1 复制 3 3 3 output1 复制 三角形 等腰三角形 等边三角形 input2 复制 3 3 5 output2 复制 三角形 等腰三角形 input3 复制 1 2 3 output3 复制 No 语言方向:C++ 系统环境:Windows(214点数解答 | 2025-08-24 17:31:55)82
- 优化并整合成一个子程序:.版本 2 .支持库 iext .支持库 spec .子程序 坐标数组去重, 图色返回信息, 公开 .参数 原始坐标数组, 坐标数组, 数组 .参数 距离阈值, 整数型 .局部变量 结果数组, 图色返回信息, , "0" .局部变量 i, 整数型 .局部变量 j, 整数型 .局部变量 是否重复, 逻辑型 .局部变量 距离, 双精度小数型 .如果真 (取数组成员数 (原始坐标数组) ≤ 0) 返回 (结果数组) .如果真结束 加入成员 (结果数组, 原始坐标数组 [1]) .计次循环首 (取数组成员数 (原始坐标数组), i) 是否重复 = 假 .如果真 (i = 1) 到循环尾 () .如果真结束 .计次循环首 (取数组成员数 (结果数组), j) 距离 = 求平方根 (求次方 (原始坐标数组 [i].x - 结果数组 [j].x, 2) + 求次方 (原始坐标数组 [i].y - 结果数组 [j].y, 2)) .如果真 (距离 ≤ 距离阈值) (2181点数解答 | 2025-07-23 10:26:29)87
- matlab.已知 y=x2,yz=cos(2x), yз=y1*y2,完成下列操作。(1)在同一坐标系下用不同的颜色和线型绘制3条曲线。(2)以子图形式绘制3条曲线。 (3)分别用条形图、阶图、杆图和填充图绘制3条曲线。(416点数解答 | 2024-10-25 08:08:28)179
- matlab.已知 y=x2,yz=cos(2x), yз=y1*y2,完成下列操作。(1)在同一坐标系下用不同的颜色和线型绘制3条曲线。(2)以子图形式绘制3条曲线。 (3)分别用条形图、阶图、杆图和填充图绘制3条曲线。(1055点数解答 | 2024-10-25 08:20:29)139
- 应用循环嵌套在网页打印输出创意图案,图案形状自定(如:三角形、菱形、漏斗形等)。要求: 1、图案要有一定规则,同时兼具创意和美观。 2、图案基本构成形状可以是符号、数字、字母或图片。 3、网页命名为“学生姓名+创意图案”。(259点数解答 | 2024-12-23 08:15:22)177
- js如何将2024-04-15t07:10:46.000 00:00时间转化为yyyy-mm-dd hh:mm:ss(244点数解答 | 2024-04-15 17:03:14)209
- java的hutool中,是哪个类标准了静态日期格式字符串“yyyy-mm-dd hh:mm:ss”(42点数解答 | 2024-10-30 13:47:01)145
- 长为100mm,宽为10mm,厚度为1mm的薄板左端面固定,右端面上半部作用均布载荷10n/mm*mm,已知弹性模量为100gpa,泊松比为0。采用三角形单元划分网格,编写matlab有限元计算程序。求距离右端面50mm横截面上的应力与位移分布;(1041点数解答 | 2025-01-06 09:15:24)109
- public LineInfo selLineInfo(LineInfo lineInfo) throws Exception { LineBasicInfo lineBasicInfo = new LineBasicInfo(); Date nowTime = new Date(); SimpleDateFormat simpleFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); LineInfo lineInfo2 = new LineInfo(); if (lineInfo.getId() == 0) { lineBasicInfo.setLineName("M1"); lineInfo2.setLineName("**T2_M1"); } else if (lineInfo.getId() == 1) { lineBasicInfo.setLineName((1080点数解答 | 2025-03-04 15:24:59)117
- public LineInfo selLineInfo(LineInfo lineInfo) throws Exception { LineBasicInfo lineBasicInfo = new LineBasicInfo(); Date nowTime = new Date(); SimpleDateFormat simpleFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); LineInfo lineInfo2 = new LineInfo(); if (lineInfo.getId() == 0) { lineBasicInfo.setLineName("M1"); lineInfo2.setLineName("**T2_M1"); } else if (lineInfo.getId() == 1) { lineBasicInfo.setLineName((1080点数解答 | 2025-03-04 15:27:11)136
- 救援争先 内存限制: 256 Mb时间限制: 1000 ms 题目描述 某地出现了灾害,各地派出了 n n 只救援队。这些救援队是在同一天出发的,但出发时间不一样,路程也有长有短,所以达到时间有先有后。 给定每个队伍的出发时间,以及每只队伍的路程,请按照到达时间为这些队伍排序,如果多只队伍的到达时间正好相等,则出发时间靠前的队伍排在前列,如果出发时间仍然相等,则编号较小的队伍排在前列。 输入格式 第一行:单个整数 n n,表示救援队数量。 第二行到第 n + 1 n+1 行:在第 i + 1 i+1 行,有两个时间,表示第 i i 只救援队的出发时间和路程,数据格式均为 hh:mm: hh 表示小时,在 00 到 23 之间; mm 表示分钟,在 00 到 59 之间。 输出格式 共 n n 行,每行一个整数,按救援队到达的先后顺序输出它们的编号。 数据范围 1 ≤ n ≤ 1000 1≤n≤1000。 样例数据 输入: 3 19:00 01:00 15:00 05:00 15:00 05:00 输出: 2 3 1 说明: 3只队伍同时到达,2号和3号出发较早,所(693点数解答 | 2025-08-07 10:56:54)107