def knapsack_with_solutions(n, g, weights, values): dp = [[0] * (g + 1) for _ in range(n + 1)] count = [[0] * (g + 1) for _ in range(n + 1)] for i in range(n + 1): count[i][0] = 1 for i in range(1, n + 1): for j in range(g + 1): dp[i][j] = dp[i - 1][j] count[i][j] = count[i - 1][j] if j >= weights[i - 1]: if dp[i][j] < dp[i - 1][j - weights[i - 1]] + values[i - 1]: dp[i][j] = dp[i - 1][j - w
This implementation of the knapsack problem uses dynamic programming to find the maximum value that can be obtained by selecting items from a given array of weights and values, subject to a maximum weight constraint. The dp table stores the maximum value that can be obtained for each weight limit up to g, considering the first i items. The count table stores the number of ways to achieve the maximum value for each weight limit up to g, considering the first i items. The algorithm first initializes the count table by setting count[i][0] = 1 for all i, as there is always one way to achieve a weight limit of 0. Then, for each item i and weight limit j, the algorithm checks if adding item i to the knapsack would result in a higher value than not adding it. If so, it updates dp[i][j] and count[i][j] with the maximum value and number of ways, respectively. Finally, the algorithm returns the maximum value and the number of ways to achieve it for the weight limit g. Note: The implementation is incomplete as it is cut off at the line "dp[i][j] = dp[i - 1][j - w". The code seems to have been cut off accidentally. [2024-06-09 18:21:03 | AI写代码神器 | 760点数解答]
- [GPT] def knapsack_with_solutions(n, g, weights, values): dp = [[0] * (g + 1) for _ in range(n + 1)] count = [[0] * (g + 1) for _ in range(n + 1)] for i in range(n + 1): count[i][0] = 1 for i in range(1, n + 1): for j in range(g + 1): dp[i][j] = dp[i - 1][j] count[i][j] = count[i - 1][j] if j >= weights[i - 1]: if dp[i][j] < dp[i - 1][j - weights[i - 1]] + values[i - 1]: dp[i][j] = dp[i - 1][j - w(760点数解答 | 2024-06-09 18:21:03)268
- [GPT] def knapsack(n, g, w, v): dp = [[0] * (g + 1) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(1, g + 1): if w[i - 1] <= j: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i - 1]] + v[i - 1]) else: dp[i][j] = dp[i - 1][j] max_value = dp[n][g] def backtrack(i, j, path, current_value): if i == 0 or j == 0: if current_value == max_value: s(191点数解答 | 2024-06-09 19:21:11)244
- [字节豆包] function BWB takes nothing returns nothing local integer dP=LoadInteger(Y2,GetHandleId(GetTriggeringTrigger()),$CFDE6C76) set dP=dP+3 call SaveInteger(Y2,GetHandleId(GetTriggeringTrigger()),$CFDE6C76,dP) call SaveInteger(Y2,GetHandleId(GetTriggeringTrigger()),$ECE825E7,dP) call SaveGroupHandle(Y2,GetHandleId(GetTriggeringTrigger())*dP,$214C62CC,**3(GetPlayableMapRect())) call ForGroupBJ(LoadGroupHandle(Y2,GetHandleId(GetTriggeringTrigger())*dP,$214C62CC),function BV9) call GroupClear(LoadGroupHa(846点数解答 | 2025-10-27 19:10:27)42
- [GPT] def is_valid_position(n, m, x, y): if x <0 or x >= n or y < 0 or y >= m: return false return true def dfs(n, m, x, y, visited): directions = [(1, 2), (1, -2), (-1, 2), (-1, -2), (2,1), (2, -1), (-2, 1), (-2, -1)] visited[x][y] = true count = 0 for dx, dy in directions: new_x, new_y = x + dx, y + dy if is_valid_position(n, m, new_x, new_y) and not visited[new_x][new_y]: count += dfs(n, m, new_x, new_y, visited) visited[x][y] = false if count == 0: return1 if all(visited[i][j] for i in range(n) f(50点数解答 | 2024-11-18 19:36:52)171
- [GPT] #今有部分股票交易数据表“trd_data”,字段名称为: # stkcd 、trddt、开盘价、最高价、最低价、收盘价、交易量、交易金额 # 读取股票代码601668,2017-01-01至2018-01-01的交易数据, # 计算macd指标,公式参考书本 # 返回计算结果,结果用一个数据框macd表示。 #注意:读取的交易数据表,需按照日期的升序进行排序 def return_values(): #1.读取数据 import pandas as pd data=pd.read_excel('trd_data.xlsx') d=data[data.iloc[:,0].values==601668] d=d[d.iloc[:,1].values>='2017-01-01'] d=d[d.iloc[:,1].values<='2018-01-01'] d.index=range(len(d)) #d即为待计算的数据框,索引重新排序 #2.指数平滑异同平均线macd计算 #3.合并数据(409点数解答 | 2024-12-10 09:29:33)266
- [字节豆包] 实验报告题目: 采用python或c++语言,实现如下功能: 实现古典密码中的移位密码和仿射密码,具体实现如下接口: python 接口: <<<<<移位密码>>>>> def is_valid_s(k): 判断k是否为合理的密钥 def encrypt_s(p, k): 密钥合理,则采用k对p进行加密,p为明文字符串,k为密钥,返回密文。 密钥不合理,则返回none. def decrypt_s(c,k): 密钥合理,则采用k对c进行解密,c为密文字符串,k为密钥,返回密文。 密钥不合理,则返回none. <<<<<仿射密码>>>>> def is_valid_a(a,b): 判断(a,b)是否为合理的密钥 def encrypt_s(p, a,b): 密钥合理,则采用a,b对p进行加密,p为明文字符串,a,b为密钥,返回密文。 密钥不合理,则返回none. def decrypt_s(c,a,b): //注意解密的时候需要计算a的逆元 密钥合理,则采用a,b对c进行解密,c为密文字符串,k为密钥,返回密文。 密钥不合理,则返回none. c++接口: <<<(798点数解答 | 2024-12-18 15:55:47)185
- [GPT] 冒泡排序,用一个函数将十个数从小排到大,再用一个函数:输入一个要查找的数,输出其所在位置 def bubble_sort(arr): n=len(arr) for i in range(n): for j in range(0,n-i-1): if arr[j]>arr[j+1]: arr[j],arr[j+1]=arr[j+1],arr[j] target=input("请输入要查找的数:") arr=[19,34,2,5,8,7,4,6,9,1] def search_number(arr,target): for i in range(len(arr)): if arr[i]==target: return i else: return -1 position=search_number(arr,target) if position!=-1:(51点数解答 | 2024-10-22 16:14:33)167
- [字节豆包] #define _crt_secure_no_warnings #include <stdio.h> #include <stdlib.h> #include<time.h> int game(char result) { int rn, num; int count = 1; srand((unsigned int)time(null)); for (int i = 0;i<1000 ; i++) { rn = rand(); if ((rn <= 100) && (rn >= 1)) { i = 1001; } } for (int i = 0; i < 7; i++) { num = scanf("%d", &num); if (num == rn) { printf("你赢了,一共猜了%d次", count); i = 7; } else if (num > rn) { printf("你猜错了,猜的偏大"); count++; } else if (num < rn) { printf("你猜错了,猜的偏小"); count++; } if (count == 6(403点数解答 | 2024-11-01 12:03:29)257
- [阿里通义] ''' 补充代码,使得程序能正确识别出可能发生的异常,并显示对应的提示信息。 - 如果输入了0,则提示“不能输入零” - 如果是因为引用元组元素时索引错误,则提示“索引超出了范围” - 如果是其他错误,则提示“出错了” ''' values = (12,34,56,78,90) try: x = eval(input()) # 提示输入一个数 for i in range(len(values)+1): y = values[i]/x ########## begin ########## except : print("不能输入零") except : print("索引超出了范围") except : print("出错了") ########## end ########## else: print("顺利完成")(208点数解答 | 2024-11-28 13:21:12)183
- [字节豆包] 在python里这段代码哪里有毛病? def bubble_sort(arr): n=len(arr) for i in range(n): for j in range(0,n-i-1): if arr[j]>arr[j+1]: arr[j],arr[j+1]=arr[j+1],arr[j] def search_number(arr,target): for i in range(len(arr)): if arr[i]==target: return i else: return -1 arr=[19,34,2,5,8,7,4,6,9,1] bubble_sort(arr) print("排序后的列表:",arr) target=input("请输入要查找的数:") position=search_number(arr,target) search_number(ar(108点数解答 | 2024-10-25 20:12:55)189
- [字节豆包] 为什么这段代码在python里运行的结果 显示要查找的数在列表中的位置不正确 def bubble_sort(arr): n=len(arr) for i in range(n): for j in range(0,n-i-1): if arr[j]>arr[j+1]: arr[j],arr[j+1]=arr[j+1],arr[j] def search_number(arr,target): for i in range(len(arr)): if arr[i]==target: return i return -1 arr=[19,34,2,5,8,7,4,6,9,1] bubble_sort(arr) print("排序后的列表:",arr) target=input("请输入要查找的数:") position=search_number(arr,target) search_num(207点数解答 | 2024-10-25 20:16:58)225
- [字节豆包] def bacteria_growth(grid, n, k, m): time =0 total_population = sum(sum(row) for row in grid) while total_population < m: new_grid = [[0 for _ in range(n)] for _ in range(n)] for i in range(n): for j in range(n): if grid[i][j] >= k or (i > 0 and grid[i - 1][j] >= k) or (i < n - 1 and grid[i + 1][j] >= k) or (j > 0 and grid[i][j - 1] >= k) or (j < n - 1 and grid[i][j + 1] >= k): new_grid[i][j] = grid[i][j] + 1 else: new_grid[i][j] = grid[i][j] grid = new_grid total_population = sum(sum(row) for ro(194点数解答 | 2025-04-11 13:12:43)123