```python import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from mpl_toolkits.mplot3d import Axes3D # 设置图形 fig = plt.figure(figsize=(10, 8)) ax = fig.add_subplot(111, projection='3d') ax.set_facecolor('black') fig.patch.set_facecolor('black') # 爱心参数方程 def heart(t): x = 16 * np.sin(t) 3 y = 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t) - np.cos(4*t) return x, y # 生成爱心形状的点 t = np.linspace(0, 2*np.pi, 1000) x, y = heart(t) z = np.


这段代码使用Python编写,依赖matplotlib和numpy库。运行环境需要安装Python及以下依赖: - Python 3.x - numpy - matplotlib 推荐使用Jupyter Notebook、PyCharm、VS Code等支持Python的IDE或编辑器运行。 我在以往的开发过程中,碰到过以下几点需要格外小心处理的地方: 1. 确保matplotlib版本支持FuncAnimation,旧版本可能存在兼容性问题。 2. 代码中爱心参数方程和粒子重置逻辑需要仔细调试,避免粒子行为异常。 3. 动画性能受粒子数量和更新频率影响,调整参数时需平衡效果与流畅度。 [2025-08-29 21:24:33 | AI写代码神器 | 130点数解答]
相关提问
- ```python import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from mpl_toolkits.mplot3d import Axes3D # 设置图形 fig = plt.figure(figsize=(10, 8)) ax = fig.add_subplot(111, projection='3d') ax.set_facecolor('black') fig.patch.set_facecolor('black') # 爱心参数方程 def heart(t): x = 16 * np.sin(t) 3 y = 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t) - np.cos(4*t) return x, y # 生成爱心形状的点 t = np.linspace(0, 2*np.pi, 1000) x, y = heart(t) z = np.(1487点数解答 | 2025-08-07 11:24:56)62
- ```python import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from mpl_toolkits.mplot3d import Axes3D # 设置图形 fig = plt.figure(figsize=(10, 8)) ax = fig.add_subplot(111, projection='3d') ax.set_facecolor('black') fig.patch.set_facecolor('black') # 爱心参数方程 def heart(t): x = 16 * np.sin(t) 3 y = 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t) - np.cos(4*t) return x, y # 生成爱心形状的点 t = np.linspace(0, 2*np.pi, 1000) x, y = heart(t) z = np.(130点数解答 | 2025-08-29 21:24:33)52
- from typing import list import matplotlib.pyplot as plt # 对象式绘图 # pyplot模块中的figure()函数创建名fig的figure对象 fig=plt(figsize=(12,8)) # 在figure对象中创建一个axes对象,每个axes对象即为一个绘图区域 ax=fig.add_subplot(111) #pandas 生成时间序列 date_index=pd.date_range('2019-01-01',frep='d',periods=10) # 分别模拟生成涨跌时的成交量数据 red_ber =【1000,0,0,0,879,986,213,0,0,0,】 green—bar=[0,200,599,567,0,0,0,234,998,489] # 绘制条形图 ax.bar(date_index,red_ber,facecolor='red') ax.bar(date_index,green_bar,facecolor='green') # 设置轴标题 ax.set_xlabel(u'交易日',fonts(104点数解答 | 2024-11-21 20:57:20)170
- import os import datetime from flask import Flask, request, jsonify import requests from flask_cors import CORS import re import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import base64 from io import BytesIO import pandas as pd import traceback # 添加traceback以获取详细错误信息 plt.rcParams["font.sans-serif"] = ["SimHei"] app = Flask(__name__) CORS(app) FASTGPT_API_URL = 'http://localhost:3000/api/v1/chat/completions' FASTGPT_API_KEY = 'fastgpt-gWzitHpBa8XRr0q(713点数解答 | 2025-06-18 16:00:34)117
- #include <stdio.h> #include <math.h> #define pi 3.14159265358979323846 double meridianarclength(double b) { double a = 6378140.0; double e2 = 0.00669438002290; double m = a * (1 - e2) * (1 - e2 * sin(b) * sin(b)) * pow(1 - e2 * sin(b) * sin(b), 1.5); double n = a / sqrt(1 - e2 * sin(b) * sin(b)); return m + n * sin(b) * cos(b) * pow(tan(b),2) /2 + n * sin(b) * pow(cos(b), 3) * (5 - pow(tan(b), 2) + 9 * e2 * pow(cos(b), 2)) * pow(tan(b), 4) / 24; } double calculatebaselatitude(double x,(48点数解答 | 2024-11-21 13:05:21)167
- #include <stdio.h> #include <math.h> #define pi 3.14159265358979323846 double meridianarclength(double b) { double a = 6378140.0; double e2 = 0.00669438002290; double m = a * (1 - e2) * (1 - e2 * sin(b) * sin(b)) * pow(1 - e2 * sin(b) * sin(b), 1.5); double n = a / sqrt(1 - e2 * sin(b) * sin(b)); return m + n * sin(b) * cos(b) * pow(tan(b),2) /2 + n * sin(b) * pow(cos(b), 3) * (5 - pow(tan(b), 2) + 9 * e2 * pow(cos(b), 2)) * pow(tan(b), 4) / 24; } double calculatebaselatitude(double x, double y)(565点数解答 | 2024-11-21 13:08:38)169
- import numpy as np import matplotlib.pyplot as plt from scipy.stats import chi2 import pandas as pd import itertools from statsmodels.stats.outliers_influence import variance_inflation_factor from sklearn.impute import SimpleImputer # 用于简单缺失值填充 import plotly.graph_objects as go from plotly.subplots import make_subplots plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 # 问题背景与意义说明 # 在生产过程中,产品可能会出现多种类型的缺陷,通过对不同缺陷类型的频数分布进行监控, # 可以及时发(925点数解答 | 2025-04-05 17:47:55)136
- import jieba from wordcloud import WordCloud import matplotlib.pyplot as plt text='中华文化博大精深,包含诗词、书法、绘画、音乐、戏曲等多个领域。今天我们要传承和弘扬中华文化,让它在新的时代里焕发出更加绚丽的光彩。' seg_list =jieba.cut(text,cut_all=False) words=''.join(seg_list) wordcloud=WordCloud(font_path='simhei.ttf', backgroud_color='white', max_words=10, width=400,height=400, margin=1 ).generate(words) plt.figure(figsize=(10,5)) plt.imshow(wordcloud,int(408点数解答 | 2025-06-09 09:14:30)79
- 阅读代码完成填空1~7题 import numpy as np # 生成 1000 个服从正态分布的随机整数(均值 100,标准差 8) np.random.seed(42) num1 = np.random.normal( ______, 8, size=1000).reshape(-1,1). ______ #第1、2空 # 生成 1000 个 1 到 10 之间的随机整数 num2 = np.random.randint(1, ______, size=1000).reshape(-1,1) #第3空 # 合并数据 data = np.__________((num1, num2), axis=_________) #第4、5空 # 保存到 CSV 文件,数据间以逗号间隔,保存格式为整数%d np.savetxt("data.csv", data, delimiter="_________", fmt='%d',header="num1,num2", comments="") #第6空 # 读取 CSV 文(506点数解答 | 2025-03-23 14:32:14)199
- 阅读代码完成填空1~7题 import numpy as np # 生成 1000 个服从正态分布的随机整数(均值 100,标准差 8) np.random.seed(42) num1 = np.random.normal( ______, 8, size=1000).reshape(-1,1). ______ #第1、2空 # 生成 1000 个 1 到 10 之间的随机整数 num2 = np.random.randint(1, ______, size=1000).reshape(-1,1) #第3空 # 合并数据 data = np.__________((num1, num2), axis=_________) #第4、5空 # 保存到 CSV 文件,数据间以逗号间隔,保存格式为整数%d np.savetxt("data.csv", data, delimiter="_________", fmt='%d',header="num1,num2", comments="") #第6空 # 读取 CSV 文(116点数解答 | 2025-03-26 22:22:15)224
- 阅读代码完成填空1~7题 import numpy as np # 生成 1000 个服从正态分布的随机整数(均值 100,标准差 8) np.random.seed(42) num1 = np.random.normal( ______, 8, size=1000).reshape(-1,1). ______ #第1、2空 # 生成 1000 个 1 到 10 之间的随机整数 num2 = np.random.randint(1, ______, size=1000).reshape(-1,1) #第3空 # 合并数据 data = np.__________((num1, num2), axis=_________) #第4、5空 # 保存到 CSV 文件,数据间以逗号间隔,保存格式为整数%d np.savetxt("data.csv", data, delimiter="_________", fmt='%d',header="num1,num2", comments="") #第6空 # 读取 CSV 文(178点数解答 | 2025-03-26 22:26:30)265
- import numpy as np import math from datetime import datetime, timedelta from pymoo.core.problem import elementwiseproblem k_legal = 0.0005624701263657791 b=6371 b=7371 phi=30.35 pi=3.1415926 standard_meridian=120 mean1=9.38167 dev1=0.22401 mean2=4816.70238 dev2=164.0126 def calculate_length(phi, delta, omega, b, b): phi_rad = np.radians(phi) delta_rad = np.radians(delta) omega_rad = np.radians(omega) r_prime = b * np.sin(phi_rad - delta_rad) r_double_prime = b * np.cos(phi_(30点数解答 | 2024-08-04 10:23:08)203