from pulp import * # 定义原材料和订单数据 materials = [ {"length": 5.5, "cost": 18}, {"length": 6.2, "cost": 22}, {"length": 7.8, "cost": 28} ] orders = [ {"quantity": 10, "width": 1.6, "height": 2.2, "price": 480}, {"quantity": 20, "width": 1.8, "height": 2.4, "price": 680}, {"quantity": 20, "width": 1.7, "height": 2.3, "price": 550}, {"quantity": 15, "width": 1.5, "height": 2.0, "price": 420} ] kerf = 0.005 # 锯口宽度 # 创建问题 prob = LpProblem("Window_Frame_Cutting", LpMaximize)


这段代码使用PuLP库解决了一个窗户框架切割优化问题。目标是最大化利润(订单收入减去原材料成本),同时满足客户订单需求。 代码分析: 1. 定义了3种原材料和4个订单的数据结构 2. 创建了线性规划问题,变量包括: - x[i,j]:第i种原材料用于第j个订单宽度的数量 - y[i,j]:第i种原材料用于第j个订单高度的数量 - z[i]:使用的第i种原材料的总量 3. 目标函数计算总收入减去总成本 4. 约束条件确保: - 每个订单的宽度和高度需求得到满足 - 每种原材料的使用不超过其长度限制 优化建议: 1. 可以添加约束确保z[i]与x[i,j]、y[i,j]的关系更精确 2. 考虑将kerf作为参数传入,增加灵活性 3. 结果输出可以更详细,显示每种原材料的使用情况和分配方案 三条额外需要注意的逻辑点: - 当前模型假设每种原材料的切割没有浪费,实际情况可能需要考虑切割模式 - 订单价格是否已包含所有成本因素需要确认 - 模型没有考虑原材料库存限制,实际应用中可能需要添加 [2025-06-17 10:43:56 | AI写代码神器 | 261点数解答]
相关提问
- from pulp import * # 定义原材料和订单数据 materials = [ {"length": 5.5, "cost": 18}, {"length": 6.2, "cost": 22}, {"length": 7.8, "cost": 28} ] orders = [ {"quantity": 10, "width": 1.6, "height": 2.2, "price": 480}, {"quantity": 20, "width": 1.8, "height": 2.4, "price": 680}, {"quantity": 20, "width": 1.7, "height": 2.3, "price": 550}, {"quantity": 15, "width": 1.5, "height": 2.0, "price": 420} ] kerf = 0.005 # 锯口宽度 # 创建问题 prob = LpProblem("Window_Frame_Cutting", LpMaximize)(261点数解答 | 2025-06-17 10:43:56)70
- from pulp import * # 定义原材料和订单数据 materials = [ {"length": 5.5, "cost": 18}, {"length": 6.2, "cost": 22}, {"length": 7.8, "cost": 28} ] orders = [ {"quantity": 10, "width": 1.6, "height": 2.2, "price": 480}, {"quantity": 20, "width": 1.8, "height": 2.4, "price": 680}, {"quantity": 20, "width": 1.7, "height": 2.3, "price": 550}, {"quantity": 15, "width": 1.5, "height": 2.0, "price": 420} ] kerf = 0.005 # 锯口宽度 # 创建问题 prob = LpProblem("Window_Frame_Cutting", LpMaximize)(286点数解答 | 2025-06-17 10:44:59)79
- 根据orders = [ 10, 1.6, 2.2, 480; % 订单1 20, 1.8, 2.4, 680; % 订单2 20, 1.7, 2.3, 550; % 订单3 15, 1.5, 2.0, 420 % 订单4 ]; % 原材料数据 raw_materials = [ 5.5,18; 6.8,22; 7,28; ]; s = 0.005; % 锯口宽度 tolerance = 0.01; % 尺寸容差 % 提取订单需求 n = orders(:, 1); % 订单量 w = orders(:, 2); % 宽度目标 h = orders(:, 3); % 高度目标 p = orders(:, 4); % 单价 % 原材料长度和成本 L = raw_materials(:, 1); C = raw_materials(:, 2); % 变量定义: % x(i,j,1): 从原材料j切割订单i的宽度 % x(i,j,2): 从原材料j切割订单i的高度 % y(j): 使用的原材料j的数量 % (2480点数解答 | 2025-05-10 15:47:18)120
- % 参数初始化 raw_materials = [5.5, 6.2,7.8]; %原材料长度 material_costs = [18, 22,28]; % 原材料成本 orders = [10, 20,20, 15]; % 订单量 widths = [1.6, 1.8,1.7, 1.5]; % 目标宽度 heights = [2.2, 2.4,2.3, 2.0]; % 目标高度 prices = [480, 680,550, 420]; % 单价 kerf = 0.005; %锯口宽度 tolerance =0.01; %允许误差 % 缺陷信息 (原材料类型,起始位置,缺陷长度) defects = { [1,1.0, 0.03; 1,2.5, 0.04], % 类型1的缺陷 [2, 0.5, 0.02; 2,1.8, 0.05], %类型2的缺陷 [3,3.0, 0.03] %类型3的缺陷 }; %遗传算法参数 options = optimoptions('ga', 'PopulationSize',100, ... 'MaxGenerations',200, ... 'Di(456点数解答 | 2025-05-11 00:01:39)130
- % 定义参数 orders = [10, 1.6, 2.2; % 订单1:学校教学楼 20, 1.8, 2.4; % 订单2:酒店客房 20, 1.7, 2.3; % 订单3:医院病房 15, 1.5, 2.0]; % 订单4:办公楼 raw_materials = [5.5, 18; % 原材料1:长度5.5米,单价18元/根 6.2, 22; % 原材料2:长度6.2米,单价22元/根 7.8, 28]; % 原材料3:长度7.8米,单价28元/根 saw_width = 0.005; % 锯口宽度 tolerance = 0.01; % 允许误差范围 prices = [480; 680; 550; 420]; % 窗框单价(元/套) % 初始化变量 num_orders = size(orders, 1); num_materials = size(raw_materials, 1); % 构建目标函数矩阵 total_profit = 0; (1003点数解答 | 2025-05-01 16:23:11)169
- ```matlab % 定义参数 orders = [10, 1.6, 2.2; % 订单1:学校教学楼 20, 1.8, 2.4; % 订单2:酒店客房 20, 1.7, 2.3; % 订单3:医院病房 15, 1.5, 2.0]; % 订单4:办公楼 raw_materials = [5.5, 18; % 原材料1:长度5.5米,单价18元/根 6.2, 22; % 原材料2:长度6.2米,单价22元/根 7.8, 28]; % 原材料3:长度7.8米,单价28元/根 saw_width = 0.005; % 锯口宽度 tolerance = 0.01; % 允许误差范围 prices = [480; 680; 550; 420]; % 窗框单价(元/套) % 初始化变量 num_orders = size(orders, 1); num_materials = size(raw_materials, 1); % 构建目标函数矩阵 total_pr(1036点数解答 | 2025-05-10 14:23:41)170
- import javax.swing.*; import java.awt.*; import java.awt.datatransfer.clipboard; import java.awt.datatransfer.stringselection; import java.awt.datatransfer.transferable; import java.awt.event.*; import java.io.*; import java.nio.file.files; import java.nio.file.path; import java.nio.file.paths; import java.time.localdatetime; import java.util.hashmap; import java.util.list; import java.util.map; import java.util.random; public class copy { static private final jtextarea textarea = new jtext(1497点数解答 | 2024-08-25 09:40:33)321
- import openpyxl import smtplib import imaplib import email import json import os import re from bs4 import BeautifulSoup from fastapi import FastAPI, Form from openpyxl.styles import Alignment from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.header import decode_header from email import encoders import pandas as pd app = FastAPI() RECEIVER_EMAILS = { 0: "yundongshijie001@protonmail.com", 1: "xiaobudian001@protonmail.com" } email_address = "(182点数解答 | 2025-04-12 00:49:09)163
- 窗边框生产中的最优切割问题用哪种方法的代码在matlab上得到最优解答在问题二中问题 1 假设每个订单包含多个窗框的需求,并且每个窗框有其目标宽度、 目标高度以及目标范围(即目标尺寸的允许误差范围)。每次切割时,需要考 虑锯口宽度对实际切割尺寸的影响。要求在剩余原材料的长度内,尽量满足订 单的目标尺寸,并尽可能减少切割损失。表 1 是具体的订单需求: 表 1:订单的具体切割需求 订单号 订单需求对象 订单量 (套) 宽度目标 (米) 高度目标(米) 窗框单价(元/套) 1 学校教学楼 10 1.6 2.2 480 2 酒店客房 20 1.8 2.4 680 3 医院病房 20 1.7 2.3 550 4 **办公楼 15 1.5 2.0 420 宽度和高度可以在给定尺寸的基础上有 0.01 米的变化范围,制作一个完整 的窗框需要两个高和两个宽。已知原材料的长度分别为: 5.5 米、6.2 米、7.8 米, 单价分别为 18 元/根、22 元/根和 28 元/根,原材料的数量不限,锯口宽度为 0.005 米。请根据原材料的长度,在尽可能满足用户需求的情况下,建立数学模 型,给出最优切割方(1229点数解答 | 2025-05-10 23:50:47)121
- #include<stdio.h> int main() { int x; float cost; scanf("%d",&x); if(x<0) { printf("invalid value!"); } if(x<50) { cost=0.53*x; printf("cost = %.2f",cost); } if(x=50) { printf("cost = 26.50"); } if(x>50) { cost=(x-50)*0.58+26.50; printf("cost = %.2f",cost); } return 0; }(242点数解答 | 2024-11-05 09:31:52)169
- from kivy.app import app from kivy.uix.button import button from kivy.uix.boxlayout import boxlayout from kivy.uix.filechooser import filechooserlistview from kivy.uix.popup import popup from kivy.uix.label import label from kivy.uix.screenmanager import screenmanager, screen from kivy.core.window import window from kivy.uix.treeview import treeview, treeviewlabel from unitypy import assetsmanager from unitypy.exceptions import unitypyerror import os from pil import image import time class file(262点数解答 | 2024-12-01 17:07:07)216
- package com.example.weather; import android.content.context; import android.media.mediaplayer; import android.net.uri; import android.os.bundle; import android.util.log; import android.view.layoutinflater; import android.view.view; import android.view.viewgroup; import android.webkit.websettings; import android.webkit.webview; import android.webkit.webviewclient; import android.widget.videoview; import androidx.fragment.app.fragment; public class realtimemonitoringfragment extends fragment {(30点数解答 | 2024-10-12 10:31:18)226