C++: 题目描述:给定两个长度为 n 的序列 a=(a1,a2,⋯,an) 和 b=(b1,b2,⋯,bn),计算 a1b1+a2b2+⋯+anbn的值。输入描述:第一行是一个整数 n。1≤n≤1000。第二行包含 n 个整数 a1,a2,⋯,an。第三行包含 n 个整数 b1,b2,⋯,bn。相邻整数之间用单个空格隔开。每个整数的绝对值都不超过 1000。输出描述:一个整数,即两个向量的点积结果。
以下是使用 C++ 解决此问题的代码: ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; // 输入序列长度 int a[n], b[n]; for (int i = 0; i < n; i++) { cin >> a[i]; // 输入序列 a 的元素 } for (int i = 0; i < n; i++) { cin >> b[i]; // 输入序列 b 的元素 } int dotProduct = 0; for (int i = 0; i < n; i++) { dotProduct += a[i] * b[i]; // 计算点积 } cout << dotProduct << endl; // 输出结果 return 0; } ``` 额外需要注意的逻辑点: 1. 输入的整数范围要严格控制。 2. 循环的边界条件要确保正确。 3. 考虑异常情况,如输入不符合要求的格式。 [2025-02-21 18:55:14 | AI写代码神器 | 244点数解答]
相关提问
- [字节豆包] 题目描述:给定两个长度为 n 的序列 a=(a1,a2,⋯,an) 和 b=(b1,b2,⋯,bn),计算 a1b1+a2b2+⋯+anbn的值。输入描述:第一行是一个整数 n。1≤n≤1000。第二行包含 n 个整数 a1,a2,⋯,an。第三行包含 n 个整数 b1,b2,⋯,bn。相邻整数之间用单个空格隔开。每个整数的绝对值都不超过 1000。输出描述:一个整数,即两个向量的点积结果。(186点数解答 | 2025-02-21 18:54:42)260
- [字节豆包] C++: 题目描述:给定两个长度为 n 的序列 a=(a1,a2,⋯,an) 和 b=(b1,b2,⋯,bn),计算 a1b1+a2b2+⋯+anbn的值。输入描述:第一行是一个整数 n。1≤n≤1000。第二行包含 n 个整数 a1,a2,⋯,an。第三行包含 n 个整数 b1,b2,⋯,bn。相邻整数之间用单个空格隔开。每个整数的绝对值都不超过 1000。输出描述:一个整数,即两个向量的点积结果。(244点数解答 | 2025-02-21 18:55:14)330
- [字节豆包] 7-4 有理数加法 分数 10 作者 乔林 单位 清华大学 本题要求编写程序,计算两个有理数的和。 输入格式: 输入在一行中按照a1/b1 a2/b2的格式给出两个分数形式的有理数,其中分子和分母全是整形范围内的正整数。 输出格式: 在一行中按照a/b的格式输出两个有理数的和。注意必须是该有理数的最简分数形式,若分母为1,则只输出分子。 输入样例1: 1/3 1/6 输出样例1: 1/2 输入样例2: 4/3 2/3 输出样例2: 2 帮我改一下错: #include <stdio.h> int main() { int a1,b1,a2,b2; double sum; scanf("%d/%d %d/%d", &a1, &b1, &a2, &b2); int fm = b1*b2; int fz = a1*b2 + a2*b1; if (fm % fz ==0) printf ("%d", fm / fz); else { for (int i = fm; i >= 1; i--) { (581点数解答 | 2025-12-11 11:57:09)46
- [GPT] 用c语言链表合并。题目描述 题目内容:已知单链表la=(a1, a2 .…, am)和lb=(b1, b2.…, bn),编写程序按以下规则将它们合并成一个单链表lc,要求新表c利用原表的存储空间。 lc=(a1, b1. .…, am, bm, bm+1., bn), m<=n 或者 lc=(a1, b1. …, bn, an, an+1. …, am), m> 输入格式:一行内输入单链表la中的数据(若干个正整数,之间用空格隔开,并以1结束)一行内输入单链表lb的数据(若干个正整数,之间用空悄隔开,并以1结束) 输出格式:一行内输出合并后单链表lc的数据结果,之间用两个分隔符·…隔开,结束标志·1不输出。 输入样例:13 57-1 246-1 输出样例:-1-2-34--5-6-7 则试用例 用例1 分致:20 描误提示 用例2 分数:20 错误提示; 题目运行时间限制:500ms 题目运行内存限制:32000kb(1020点数解答 | 2024-06-17 15:01:02)307
- [字节豆包] 田忌赛马 内存限制: 256 Mb时间限制: 1000 ms 题目描述 田忌和齐王各有 n n 匹马,田忌的马速度分别为 a 1 , a 2 , … , a n a1,a2,…,a n ,而齐王的马速度分别为 b 1 , b 2 , … , b n b1,b2,…,b n 。 田忌与齐王比赛 n n 轮,双方每轮挑出一匹新马,若田忌的马更快,田忌加一分,若齐王的马更快,齐王加一分,若双方速度一样,分数不变。 齐王永远按照固定的顺序选择马匹参赛,田忌应该采取什么策略才能让自己的得分减齐王的得分变得最大? 输入格式 第一行:单个整数 n n 第二行: n n 个整数 a 1 , a 2 , … , a n a1,a2,…,a n 第三行: n n 个整数 b 1 , b 2 , … , b n b1,b2,…,b n 输出格式 单个整数:表示田忌得分减齐王得分的最大值 数据范围 对于 30 % 30% 的数据, n ≤ 20 n≤20 对于 60 % 60% 的数据, n ≤ 2000 n≤2000 对于 100 % 100(567点数解答 | 2025-08-29 11:43:43)125
- [字节豆包] 田忌赛马 内存限制: 256 Mb时间限制: 1000 ms 题目描述 田忌和齐王各有 n n 匹马,田忌的马速度分别为 a 1 , a 2 , … , a n a1,a2,…,a n,而齐王的马速度分别为 b 1 , b 2 , … , b n b1,b2,…,b n。 田忌与齐王比赛 n n 轮,双方每轮挑出一匹新马,若田忌的马更快,田忌加一分,若齐王的马更快,齐王加一分,若双方速度一样,分数不变。 齐王永远按照固定的顺序选择马匹参赛,田忌应该采取什么策略才能让自己的得分减齐王的得分变得最大? 输入格式 第一行:单个整数 n n 第二行: n n 个整数 a 1 , a 2 , … , a n a1,a2,…,a n第三行: n n 个整数 b 1 , b 2 , … , b n b1,b2,…,b n输出格式 单个整数:表示田忌得分减齐王得分的最大值 数据范围 对于 30 % 30% 的数据, n ≤ 20 n≤20 对于 60 % 60% 的数据, n ≤ 2000 n≤2000 对于 100 % 100% 的数据, n ≤ 200 , 000 n≤200,000 1 (673点数解答 | 2025-08-29 11:44:44)103
- [字节豆包] 请使用简单的变量和基础的知识为我更改以下代码 #include<iostream> using namespace std; int a[305],b[305],c[305]; string a1,b2; int la,lb,lc; int main(){ cin>>a1>>b1; la=a1.size(); lb=b1.size(); for(int i=0;i<la;i++){ a[la-i]=a1[i]-'0'; } for(int i=0;i<lb;i++){ b[lb-i]=b1[i]-'0'; } lc=la+lb+1; for(int i=lc;i>=1;i--){ } }(1475点数解答 | 2025-09-20 10:15:23)85
- [字节豆包] #include<iostream> using namespace std; int a[305],b[305],c[305]; string a1,b2; int la,lb,lc; int main(){ cin>>a1>>b1; la=a1.size(); lb=b1.size(); for(int i=0;i<la;i++){ a[la-i]=a1[i]-'0'; } for(int i=0;i<lb;i++){ b[lb-i]=b1[i]-'0'; } lc=la+lb+1; for(int i=lc;i>=1;i--){ } } c++ 要加using namespace std; 不要注释 改成高精度减法 (616点数解答 | 2025-09-20 10:52:09)74
- [字节豆包] #include<iostream> using namespace std; int a[305],b[305],c[305]; string a1,b2; int la,lb,lc; int main(){ cin>>a1>>b1; la=a1.size(); lb=b1.size(); for(int i=0;i<la;i++){ a[la-i]=a1[i]-'0'; } for(int i=0;i<lb;i++){ b[lb-i]=b1[i]-'0'; } lc=la+lb+1; for(int i=lc;i>=1;i--){ } } 改成高精度除法 c++ 要加using namespace std; 不要注释(719点数解答 | 2025-09-20 10:54:17)74
- [字节豆包] 题目描述 在甜甜圈王国中,每颗甜甜圈都有一个甜度值 S 来衡量其甜蜜程度。根据甜度的不同,甜甜圈被评定为不同的等级,具体规则如下: 如果 S 在 0 到 25 之间(包含 0 和 25 ),输出 "普通甜甜圈"; 如果 S 在 26 到 50 之间(包含 26 和 50 ),输出 "美味甜甜圈"; 如果 S 在 51 到 75 之间(包含 51 和 75 ),输出 "极品甜甜圈"; 如果 S 在 76 到 99 之间(包含 76 和 99 ),输出 "绝世甜甜圈"; 如果 S 等于 100 ,输出 "传说甜甜圈"。 请根据给定的甜度值 S,输出对应的甜甜圈等级名称。 输入格式 一行一个整数 S,表示甜甜圈的甜度值。(243点数解答 | 2025-12-06 18:35:50)59
- [字节豆包] 题目描述 在一条笔直的马路上有 n 个塔台,它们被依次标号为 1,2,⋯,n,分别处于距离马路 起点 a1,a2,⋯,an(a1<a2<⋯<an)的位置。 每个塔台初始时有一个通讯半径 b1,b2,⋯,bn,这代表,对于 i 号塔台,其可以与 [ai−bi,ai+bi] 范围内的塔台通讯。 需要特别注意,对于两个塔台 A、B,当且仅当 A 塔台的位置处在 B 塔台的通讯范围 内,B 塔台才能向 A 塔台传递信号。请注意这里不是「二者的通讯范围重合,即可通 讯」。 现在你可以对这些塔台进行超频。具体的,你可以指定一个电压 k,之后所有塔台都 会被加上 k 的电压,通讯半径都会增大 k。这里的 k 仅可为非负整数。 现在要求你通过超频,使信号可以从 1 号塔台依次通过 2,3,⋯ 号塔台传输到 n 号 塔台,但是由于不合理的超频会较严重地磨损塔台,因此你想要尽可能降低超频的电 压。 请你计算出,为了达到以上目的,塔台超频需要的最小电压是多少。 输入格式 输入共 n+1 行。 第一行为一个整数 n,代表塔台的数量。 接下来 n 行,每行两个整数 ai,bi,分别代表各个(720点数解答 | 2025-11-26 20:30:18)32
- [字节豆包] #include using namespace std; int a[305],b[305],c[305]; string a1,b2; int la,lb,lc; int main(){ cin>>a1>>b1; la=a1.size(); lb=b1.size(); for(int i=0;i=1;i--){ } } 改成高精度除法并换行输出余数 c++ 要加using namespace std; 不要注释(896点数解答 | 2025-09-20 10:55:46)51