7-13 验证“哥德巴赫猜想” 分数 9 作者 徐镜春 单位 浙江大学 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。 输入格式: 输入在一行中给出一个(2, 2 000 000 000]范围内的偶数n。 输出格式: 在一行中按照格式“n = p + q”输出n的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。 输入样例: 24 输出样例: 24 = 5 + 19


以下是使用 Python 语言解决此问题的代码: ```python import math def is_prime(n): if n <= 1: return False if n <= 3: return True if n % 2 == 0 or n % 3 == 0: return False i = 5 while i * i <= n: if n % i == 0 or n % (i + 2) == 0: return False i += 6 return True def goldbach_conjecture(n): for i in range(2, n // 2 + 1): if is_prime(i) and is_prime(n - i): return f"{n} = {i} + {n - i}" return "找不到符合条件的素数分解" n = int(input()) print(goldbach_conjecture(n)) ``` [2024-11-15 00:26:05 | AI写代码神器 | 210点数解答]
相关提问
- 7-13 验证“哥德巴赫猜想” 分数 9 作者 徐镜春 单位 浙江大学 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。 输入格式: 输入在一行中给出一个(2, 2 000 000 000]范围内的偶数n。 输出格式: 在一行中按照格式“n = p + q”输出n的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。 输入样例: 24 输出样例: 24 = 5 + 19(210点数解答 | 2024-11-15 00:26:05)272
- 7-13 验证“哥德巴赫猜想” 分数 9 作者 徐镜春 单位 浙江大学 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。 输入格式: 输入在一行中给出一个(2, 2 000 000 000]范围内的偶数n。 输出格式: 在一行中按照格式“n = p + q”输出n的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。 输入样例: 24 输出样例: 24 = 5 + 19,请用c语言来编写(206点数解答 | 2024-11-15 00:27:23)154
- 7-3 验证“哥德巴赫猜想” 分数 10 简单 作者 徐镜春 单位 浙江大学 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。 输入格式: 输入在一行中给出一个(2, 2 000 000 000]范围内的偶数n。 输出格式: 在一行中按照格式“n = p + q”输出n的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。 输入样例: 24 输出样例: 24 = 5 + 19(667点数解答 | 2024-11-11 19:20:44)387
- 7-16 验证“哥德巴赫猜想” 分数 20 作者 徐镜春 单位 浙江大学 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。 输入格式: 输入在一行中给出一个(2, 2 000 000 000]范围内的偶数n。 输出格式: 在一行中按照格式“n = p + q”输出n的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。 输入样例:(18点数解答 | 2024-11-13 20:44:46)202
- 题目(description): 卫星导航系统(如我国自主研发的北斗卫星导航系统)能实时获取位置、速度、时间等时空信息,在交通运输、农林渔业、气象测报、通信授时、救灾减灾、公共安全等领域都得到了广泛应用。 在应用层面,卫星导航系统一般以报文方式进行数据传输,其中$gprmc是常用报文之一,基本的格式如下: $gprmc,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh <1> utc时间,hhmmss.sss(时分秒.毫秒)格式 <2> 定位状态,a=有效定位,v=无效定位 <3> 纬度ddmm.mmmm(度分)格式 <4> 纬度半球n(北半球)或s(南半球) <5> 经度dddmm.mmmm(度分)格式 <6> 经度半球e(东经)或w(西经) <7> 地面速率(000.0~999.9节) <8> 地面航向(000.0~359.9度,以正北为参考基准) <9> utc日期,ddmmyy(日月年)格式 <10> 磁偏角(000.0~180.0度,前面的0也(385点数解答 | 2025-01-08 03:43:54)292
- 题目(description): 卫星导航系统(如我国自主研发的北斗卫星导航系统)能实时获取位置、速度、时间等时空信息,在交通运输、农林渔业、气象测报、通信授时、救灾减灾、公共安全等领域都得到了广泛应用。 在应用层面,卫星导航系统一般以报文方式进行数据传输,其中$gprmc是常用报文之一,基本的格式如下: $gprmc,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh <1> utc时间,hhmmss.sss(时分秒.毫秒)格式 <2> 定位状态,a=有效定位,v=无效定位 <3> 纬度ddmm.mmmm(度分)格式 <4> 纬度半球n(北半球)或s(南半球) <5> 经度dddmm.mmmm(度分)格式 <6> 经度半球e(东经)或w(西经) <7> 地面速率(000.0~999.9节) <8> 地面航向(000.0~359.9度,以正北为参考基准) <9> utc日期,ddmmyy(日月年)格式 <10> 磁偏角(000.0~180.0度,前面的0也(346点数解答 | 2025-01-08 03:46:29)286
- function optimalCuttingPlan() % 最优切割方案计算函数(已测试通过) % 作者:数学建模助手 % 最后修改:2023-10-15 %% 数据准备(使用硬编码数据避免文件读取问题) % 原材料数据 [ID, 长度, 缺陷位置, 缺陷长度, 单价] raw_data = [ 1 5.5 1 0.3 17 1 5.5 3 0.2 17.33 2 6.2 2 0.4 20.59 3 7 1.5 0.2 24.41 3 7 4 0.3 24.05 4 5.8 1.2 0.5 17.33 5 6.5 2.3 0.3 22 6 7.5 1 0.6 24.77 7 6 2.8 0.4 19.83 8 8.2 1.3 0.5 27.64 9 6.8 2.1 0.3 23.32 9 6.8 5 0.2 23.69 10 5.6 1.1 0.2 17.66 11 7.3 3.1 0.4 24.77 12 6.1 1.7 0.5 19.83 13 8 2.5 0.3 27.64 14 5.9 3 0.4 18 15 6.3 1.9 0.3 21.27 16 7.8 1.2 0.(3226点数解答 | 2025-06-18 20:59:55)102
- 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。 输入格式: 输入在一行中给出一个(2, 2 000 000 000]范围内的偶数n。 输出格式: 在一行中按照格式“n = p + q”输出n的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。 输入样例: 24 输出样例: 24 = 5 + 19(209点数解答 | 2024-11-03 15:07:33)279
- 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。 用c语言写代码 输入格式: 输入在一行中给出一个(2, 2 000 000 000]范围内的偶数n。 输出格式: 在一行中按照格式“n = p + q”输出n的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。 输入样例: 24 输出样例: 24 = 5 + 19(1072点数解答 | 2024-11-03 15:08:20)179
- c语言 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。 输入格式: 输入在一行中给出一个(2, 2 000 000 000]范围内的偶数n。 输出格式: 在一行中按照格式“n = p + q”输出n的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。 输入样例: 24 输出样例: 24 = 5 + 19(265点数解答 | 2024-11-06 12:05:03)190
- c语言 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。 输入格式: 输入在一行中给出一个(2, 2 000 000 000]范围内的偶数n。 输出格式: 在一行中按照格式“n = p + q”输出n的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。 输入样例: 24 输出样例: 24 = 5 + 19(794点数解答 | 2024-11-06 12:06:41)364
- c语言 数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。 输入格式: 输入在一行中给出一个(2, 2 000 000 000]范围内的偶数n。 输出格式: 在一行中按照格式“n = p + q”输出n的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。 输入样例: 24 输出样例: 24 = 5 + 19(287点数解答 | 2024-11-06 12:06:42)192