从网站“https://so.gushiwen.cn/gushi/tangshi.aspx”中采集唐诗三百首的内容。具体要求如下:1. 采集数据完整,内容规范(即不包含特殊符号,如换行符、制表符等)。2. 结果数据保存为txt格式的文本文件,每一行包含一首古诗,具体包括信息:诗类型、诗题目、诗内容、诗作者;3. 代码逻辑结构清晰,语法规范。任务二 文本特征向量化 基于任务一的结果数据,针对“诗内容”,完成文本特征向量化(tf-idf值)输出。具体要求如下:1. 数据完整,内容规范(即数值化);2. 结果数据保存为txt格式的文本文件,每一行包含一首古诗,具体包括信息:诗类型、诗题目、诗内容、诗作者、文本特征向量(tf-idf值, 多列);3. 代码逻辑结构清晰,语法规范。任务三 数据统计分析 基于任务一的结果数据,完成诗词统计。具体要求如下:1. 统计每种诗类型的诗数量,结果数据保存为excel文件;2. 统计每个作者的诗数量,结果数据保存为excel文件;3. 对诗内容进行中文分词,并输出词云图;


以下是根据您提供的要求完成的代码示例: 任务一:采集唐诗三百首的内容 ```python import requests from bs4 import BeautifulSoup # 定义函数用于请求网页并解析数据 def get_poems(): url = "https://so.gushiwen.cn/gushi/tangshi.aspx" response = requests.get(url) response.encoding = "utf-8" soup = BeautifulSoup(response.text, "html.parser") # 获取所有的诗列表 poem_list = soup.find_all("div", class_="typecont") poems = [] # 遍历诗列表,提取相关信息 for poem in poem_list: # 获取诗类型 poem_type = poem.find_previous_sibling("div", class_="bookMl").find("span").text # 获取诗题目 poem_title = poem.find("strong").text # 获取诗内容,去除换行符和制表符 poem_content = poem.find("span", style=False).text.replace("\n", "").replace("\t", "") # 获取诗作者 poem_author = poem.find_all("p")[1].find_all("a")[1].text # 将诗信息添加到列表中 poems.append([poem_type, poem_title, poem_content, poem_author]) return poems # 调用函数获取唐诗三百首的内容 poems_data = get_poems() # 将数据保存到txt文件 with open("poems.txt", "w", encoding="utf-8") as f: for poem in poems_data: f.write("\t".join(poem)) f.write("\n") ``` 任务二:文本特征向量化 ```python from sklearn.feature_extraction.text import TfidfVectorizer poem_contents = [poem[2] for poem in poems_data] # 创建tf-idf向量化对象 vectorizer = TfidfVectorizer() # 对诗内容进行向量化处理 X = vectorizer.fit_transform(poem_contents) # 获取特征词列表 feature_names = vectorizer.get_feature_names() # 将结果保存到txt文件 with open("tfidf_values.txt", "w", encoding="utf-8") as f: for i in range(len(poems_data)): tfidf_values = X[i].toarray().tolist()[0] poem_info = poems_data[i] poem_info.append(tfidf_values) f.write("\t".join(str(x) for x in poem_info)) f.write("\n") ``` 任务三:数据统计分析 ```python import pandas as pd import jieba from collections import Counter from wordcloud import WordCloud # 统计每种诗类型的数量 poem_types = [poem[0] for poem in poems_data] type_counts = Counter(poem_types) type_df = pd.DataFrame(list(type_counts.items()), columns=["诗类型", "数量"]) type_df.to_excel("poem_type_counts.xlsx", index=False) # 统计每个作者的数量 poem_authors = [poem[3] for poem in poems_data] author_counts = Counter(poem_authors) author_df = pd.DataFrame(list(author_counts.items()), columns=["作者", "数量"]) author_df.to_excel("poem_author_counts.xlsx", index=False) # 对诗内容进行中文分词 poem_contents = [poem[2] for poem in poems_data] text = " ".join(poem_contents) words = " ".join(jieba.cut(text)) # 生成词云图 wordcloud = WordCloud(font_path="simhei.ttf", width=800, height=600).generate(words) wordcloud.to_file("wordcloud.png") ``` 以上代码使用了requests库和BeautifulSoup库来请求和解析网页内容,使用了scikit-learn库的TfidfVectorizer类来进行文本特征向量化,使用了pandas库和jieba库进行数据统计分析,使用了wordcloud库生成词云图。部分步骤需要安装相应的库。 [2024-06-23 11:15:17 | AI写代码神器 | 2078点数解答]
- 从网站“https://so.gushiwen.cn/gushi/tangshi.aspx”中采集唐诗三百首的内容。具体要求如下:1. 采集数据完整,内容规范(即不包含特殊符号,如换行符、制表符等)。2. 结果数据保存为txt格式的文本文件,每一行包含一首古诗,具体包括信息:诗类型、诗题目、诗内容、诗作者;3. 代码逻辑结构清晰,语法规范。任务二 文本特征向量化 基于任务一的结果数据,针对“诗内容”,完成文本特征向量化(tf-idf值)输出。具体要求如下:1. 数据完整,内容规范(即数值化);2. 结果数据保存为txt格式的文本文件,每一行包含一首古诗,具体包括信息:诗类型、诗题目、诗内容、诗作者、文本特征向量(tf-idf值, 多列);3. 代码逻辑结构清晰,语法规范。任务三 数据统计分析 基于任务一的结果数据,完成诗词统计。具体要求如下:1. 统计每种诗类型的诗数量,结果数据保存为excel文件;2. 统计每个作者的诗数量,结果数据保存为excel文件;3. 对诗内容进行中文分词,并输出词云图;(1159点数解答 | 2024-06-23 11:09:38)227
- 从网站“https://so.gushiwen.cn/gushi/tangshi.aspx”中采集唐诗三百首的内容。具体要求如下:1. 采集数据完整,内容规范(即不包含特殊符号,如换行符、制表符等)。2. 结果数据保存为txt格式的文本文件,每一行包含一首古诗,具体包括信息:诗类型、诗题目、诗内容、诗作者;3. 代码逻辑结构清晰,语法规范。任务二 文本特征向量化 基于任务一的结果数据,针对“诗内容”,完成文本特征向量化(tf-idf值)输出。具体要求如下:1. 数据完整,内容规范(即数值化);2. 结果数据保存为txt格式的文本文件,每一行包含一首古诗,具体包括信息:诗类型、诗题目、诗内容、诗作者、文本特征向量(tf-idf值, 多列);3. 代码逻辑结构清晰,语法规范。任务三 数据统计分析 基于任务一的结果数据,完成诗词统计。具体要求如下:1. 统计每种诗类型的诗数量,结果数据保存为excel文件;2. 统计每个作者的诗数量,结果数据保存为excel文件;3. 对诗内容进行中文分词,并输出词云图;(2078点数解答 | 2024-06-23 11:15:17)216
- 使用pycharm从网站“https://so.gushiwen.cn/gushi/tangshi.aspx”中采集唐诗三百首的内容。具体要求如下:1. 采集数据完整,内容规范(即不包含特殊符号,如换行符、制表符等)。2. 结果数据保存为txt格式的文本文件,每一行包含一首古诗,具体包括信息:诗类型、诗题目、诗内容、诗作者;3. 代码逻辑结构清晰,语法规范。任务二 文本特征向量化 基于任务一的结果数据,针对“诗内容”,完成文本特征向量化(tf-idf值)输出。具体要求如下:1. 数据完整,内容规范(即数值化);2. 结果数据保存为txt格式的文本文件,每一行包含一首古诗,具体包括信息:诗类型、诗题目、诗内容、诗作者、文本特征向量(tf-idf值, 多列);3. 代码逻辑结构清晰,语法规范。任务三 数据统计分析 基于任务一的结果数据,完成诗词统计。具体要求如下:1. 统计每种诗类型的诗数量,结果数据保存为excel文件;2. 统计每个作者的诗数量,结果数据保存为excel文件;3. 对诗内容进行中文分词,并输出词云图;4. 代码逻辑结构清晰,语法规范。(2961点数解答 | 2024-06-24 01:04:38)339
- 使用pycharm任务一从网站“https://so.gushiwen.cn/gushi/tangshi.aspx”中采集唐诗三百首的内容。具体要求如下:1. 采集数据完整,内容规范(即不包含特殊符号,如换行符、制表符等)。2. 结果数据保存为txt格式的文本文件,每一行包含一首古诗,具体包括信息:诗类型、诗题目、诗内容、诗作者;3. 代码逻辑结构清晰,语法规范。任务二 文本特征向量化 基于任务一的结果数据,针对“诗内容”,完成文本特征向量化(tf-idf值)输出。具体要求如下:1. 数据完整,内容规范(即数值化);2. 结果数据保存为txt格式的文本文件,每一行包含一首古诗,具体包括信息:诗类型、诗题目、诗内容、诗作者、文本特征向量(tf-idf值, 多列);3. 代码逻辑结构清晰,语法规范。任务三 数据统计分析 基于任务一的结果数据,完成诗词统计。具体要求如下:1. 统计每种诗类型的诗数量,结果数据保存为excel文件;2. 统计每个作者的诗数量,结果数据保存为excel文件;3. 对诗内容进行中文分词,并输出词云图;4. 代码逻辑结构清晰,语法规范。(1021点数解答 | 2024-06-24 01:07:37)233
- import requests from bs4 import beautifulsoup def get_poems(): url = "https://so.gushiwen.cn/gushi/tangshi.aspx" response = requests.get(url) response.encoding = "utf-8" soup = beautifulsoup(response.text, "html.parser") # 获取所有的诗列表 poem_list = soup.find_all("div", class_="typecont") poems = [] # 遍历诗列表,提取相关信息 for poem in poem_list: # 获取诗类型 poem_type = poem.find_previous_sibling("div", class_="bookml").find("span").text # 获取诗题目(316点数解答 | 2024-06-24 00:59:22)235
- import requests from bs4 import beautifulsoup # 爬取唐诗三百首的内容 def scrape_data(): url = "https://so.gushiwen.cn/gushi/tangshi.aspx" headers = { "user-agent": "mozilla/5.0 (windows nt 10.0; win64; x64) applewebkit/537.36 (khtml, like gecko) chrome/89.0.4389.82 safari/537.36" } response = requests.get(url, headers=headers) if response.status_code == 200: soup = beautifulsoup(response.text, "html.parser") content_divs = soup.find_all('div', c(443点数解答 | 2024-06-24 01:16:00)272
- import requests from bs4 import beautifulsoup import pandas as pd url = "https://so.gushiwen.cn/gushi/tangshi.aspx" response = requests.get(url) soup = beautifulsoup(response.text, 'html.parser') # 提取所需数据 poems_data = [] for row in soup.find_all('tr', class_='tlist')[1:]: cols = row.find_all('td') type_ = cols.text.strip() title = cols.a.text.strip() content = cols.text.replace('\n', '').replace('\t', '') author = cols.text.strip() poems_data.append([type_, title, conte(120点数解答 | 2024-06-24 02:04:56)260
- 任务一:采集唐诗三百首内容 python import requests from bs4 import beautifulsoup import pandas as pd url = "https://so.gushiwen.cn/gushi/tangshi.aspx" response = requests.get(url) soup = beautifulsoup(response.text, "html.parser") poems = [] for poem in soup.find_all("div", class_="item"): title = poem.find("h1").text.strip() content = poem.find("p").text.strip() author = poem.find("span", class_="author").text.strip() poem_type = "唐诗" poems.append((15点数解答 | 2024-06-24 15:46:11)280
- import win32com.client import os def excel_to_pdf(input_file, output_file): # 确保输入文件存在 if not os.path.exists(input_file): raise FileNotFoundError(f"文件 {input_file} 不存在") # 创建 Excel 应用程序实例 excel = win32com.client.Dispatch("Excel.Application") excel.Visible = False # 不显示 Excel 窗口 try: # 打开 Excel 文件 wb = excel.Workbooks.Open(input_file) # 设置页面布局为 A4 横向 for ws in wb.Worksheets: ws.PageSetup.Orientation = 2 # 2 表示横向 (507点数解答 | 2025-03-10 15:48:12)195
- 帮我写一个批处理文件,内容如下: 1、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中p=的值改为"参数表.xlsx"中c列对应的值; 2、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中t=的值改为"参数表.xlsx"中b列对应的值; 3、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中s=的值改为"参数表.xlsx"中d列对应的值; 如: 参数表.xlsx中a列a1,a2,a3;b列1.5,2,3;c列为10,20,30;d列100,101,102; 文件.txt中的行 1:l p[54:a1] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=10,ed=1]; 2:l p[57:a2] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=11,ed=1]; 3:l p[67:a3] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=12,ed=1]; 文件.txt修改后为 1:l p[54(811点数解答 | 2024-12-05 12:58:37)256
- 帮我写一个批处理文件,内容如下: 1、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中p=的值改为"参数表.xlsx"中c列对应的值; 2、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中t=的值改为"参数表.xlsx"中b列对应的值; 3、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中s=的值改为"参数表.xlsx"中d列对应的值; 参数表.xlsx中a列a1,a2,a3;b列1.5,2,3;c列为10,20,30;d列100,101,102; 文件.txt数据 1:l p[54:a1] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=10,ed=1]; 2:l p[57:a2] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=11,ed=1]; 3:l p[67:a3] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=12,ed=1]; 文件.txt修改后数据 1:l p[54:a1(531点数解答 | 2024-12-05 13:20:42)253
- 帮我写一个批处理文件,内容如下: 1、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中p=的值改为"参数表.xlsx"中c列对应的值; 2、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中t=的值改为"参数表.xlsx"中b列对应的值; 3、如果在"参数表.xlsx"a列中的值找到与"文件.txt"中相同的值,则把此行中s=的值改为"参数表.xlsx"中d列对应的值; 参数表.xlsx中a列a1,a2,a3;b列1.5,2,3;c列为10,20,30;d列100,101,102; 文件.txt数据 1:l p[54:a1] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=10,ed=1]; 2:l p[57:a2] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=11,ed=1]; 3:l p[67:a3] 2000mm/sec cnt100 spot[sd=1,p=25,t=2.0,s=12,ed=1]; 文件.txt修改后数据 1:l p[54:a1(495点数解答 | 2024-12-05 13:22:26)228