题目描述 幼儿园里有 n 个小朋友,每个小朋友有一个学号。 老师要求:学号是奇数的小朋友站一排,学号是偶数的小朋友站一排。 提示: 奇数:个位为 1,3,5,7,9 的数字,满足除以 2 的余数为 1。 偶数:个位为 0,2,4,6,8 的数字,满足除以 2 的余数为 0。 输入格式 共两行,第一行一个数字 n,表示有 n 个小朋友。 第二行共 n 个数字,其中第 i 个数字 ai表示第 i 个小朋友的学号。 输出格式 共两行,第一行一些数字,表示学号为奇数的小朋友的学号,按照输入的顺序输出。 即,如果一个数字输入的时候在前,那么输出的时候也应当在前。 第二行一些数字,表示学号为偶数的小朋友的学号,按照输入的顺序输出。 保证小朋友的学号既有奇数,又有偶数。 输入输出样例 输入 #1 5 1 2 3 4 5 输出 #1 1 3 5 2 4 输入 #2 5 5 2 3 1 4 输出 #2 5 3 1 2 4 说明/提示 对于 20% 的数据,n=2; 对于 40% 的数据,满足 n≤100; 对于另外 20% 的数据,满足 ai=
```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; int odd[10000], even[10000]; int oddIndex = 0, evenIndex = 0; for (int i = 0; i < n; i++) { int num; cin >> num; if (num % 2 == 1) { odd[oddIndex++] = num; } else { even[evenIndex++] = num; } } for (int i = 0; i < oddIndex; i++) { if (i != 0) cout << " "; cout << odd[i]; } cout << endl; for (int i = 0; i < evenIndex; i++) { if (i != 0) cout << " "; cout << even[i]; } cout << endl; return 0; } ``` 代码解释 1. 输入小朋友数量:使用`cin`读取小朋友的数量`n`。 2. 创建数组:创建两个数组`odd`和`even`,分别用于存储奇数和偶数学号,同时用`oddIndex`和`evenIndex`记录各自数组中元素的数量。 3. 读取学号并分类:通过循环读取每个小朋友的学号,判断其奇偶性,若是奇数存入`odd`数组,若是偶数存入`even`数组。 4. 输出奇数学号:遍历`odd`数组,按顺序输出奇数学号,每个学号间用空格分隔。 5. 输出偶数学号:遍历`even`数组,按顺序输出偶数学号,每个学号间用空格分隔。 [2025-11-26 19:39:05 | AI问答 | 406点数解答]
- [字节豆包] 题目描述 幼儿园里有 n 个小朋友,每个小朋友有一个学号。 老师要求:学号是奇数的小朋友站一排,学号是偶数的小朋友站一排。 提示: 奇数:个位为 1,3,5,7,9 的数字,满足除以 2 的余数为 1。 偶数:个位为 0,2,4,6,8 的数字,满足除以 2 的余数为 0。 输入格式 共两行,第一行一个数字 n,表示有 n 个小朋友。 第二行共 n 个数字,其中第 i 个数字 ai表示第 i 个小朋友的学号。 输出格式 共两行,第一行一些数字,表示学号为奇数的小朋友的学号,按照输入的顺序输出。 即,如果一个数字输入的时候在前,那么输出的时候也应当在前。 第二行一些数字,表示学号为偶数的小朋友的学号,按照输入的顺序输出。 保证小朋友的学号既有奇数,又有偶数。 输入输出样例 输入 #1 5 1 2 3 4 5 输出 #1 1 3 5 2 4 输入 #2 5 5 2 3 1 4 输出 #2 5 3 1 2 4 说明/提示 对于 20% 的数据,n=2; 对于 40% 的数据,满足 n≤100; 对于另外 20% 的数据,满足 ai=(406点数解答 | 2025-11-26 19:39:05)40
- [字节豆包] 题目描述 现在给出一排共 n 只鹅的身高,李白想知道最高的鹅比其他所有鹅高多少、最矮的鹅 比其他所有鹅矮多少。 请输出这两行信息。 输入格式 输入共两行。 第一行一个整数 n 表示鹅的数目。 第二行共 n 个整数 ai(i=1,2,3...n),表示第 i 只鹅的身高。 输出格式 输出共两行。 第一行共 n 个空格隔开的整数,第 i 个整数表示序列中第 i 只鹅比最高的那只鹅要 矮多少。 第二行共 n 个空格隔开的整数,第 i 个整数表示序列中第 i 只鹅比最矮的那只鹅要 高多少。 输入输出样例 输入 #1 6 4 7 8 6 3 2 输出 #1 4 1 0 2 5 6 2 5 6 4 1 0 说明/提示 李白一共有 6 只鹅,最高的一只身高为 8,最矮的一只身高为 2,然后分别作为被减 数和减数参与身高差计算可得结果。 对于 30% 数据,保证 0≤ai≤30,1≤n≤20。 对于 100% 数据,保证 0≤ai≤1018,1≤n≤106。 用c++语言(549点数解答 | 2025-11-16 20:19:06)52
- [字节豆包] 题目描述 最近有 n 个不爽的事,每句话都有一个正整数刺痛值(心理承受力极差)。爱与愁大神想知道连续 m 个刺痛值的和的最小值是多少,但是由于业务繁忙,爱与愁大神只好请你编个程序告诉他。 输入格式 第一行有两个用空格隔开的整数,分别代表 n 和 m。 第 2 到第 (n+1) 行,每行一个整数,第 (i+1) 行的整数 a i 代表第 i 件事的刺痛值 a i 。 输出格式 输出一行一个整数,表示连续 m 个刺痛值的和的最小值是多少。 输入输出样例 输入 #1复制 8 3 1 4 7 3 1 2 4 3 输出 #1复制 6 说明/提示 数据规模与约定 对于 30% 的数据,保证 n≤20。 对于 60% 的数据,保证 n≤100。 对于 90% 的数据,保证 n≤10 3 。 对于 100% 的数据,保证 0≤m≤n≤3×10 3 ,1≤a i ≤100。 用c++语言(241点数解答 | 2025-11-24 19:52:43)65
- [字节豆包] 题目描述 扶苏来到了一个迷宫,这个迷宫是一个 n 行 m 列的数字矩阵,第 i 行第 j 列写有 一个数字 ai,j。保证 1≤ai,j≤4。 扶苏会在这个迷宫的某一个位置。假设她当前在迷宫的第 i 行第 j 列: 如果 ai,j=1,则她会向上移动一行,即 i 减小 1。 如果 ai,j=2,则她会向下移动一行,即 i 增大 1。 如果 ai,j=3,则她会向左移动一列,即 j 减小 1。 如果 ai,j=4,则她会向右移动一列,即 j 增大 1。 初始时和每次移动到另一个格子后,她都会按上述的规则继续进行新的移动。 当她移动出迷宫,即到达第 0 行、第 0 列、第 n+1 行、第 m+1 列时,称她离开了 迷宫。 现在,你要回答 q 次询问,每次给定一个扶苏的初时位置,你要回答她在多少次移动 后会离开迷宫,或报告她永远不会离开迷宫。 输入格式 第一行是三个整数,表示迷宫的行数 n、列数 m 和询问数 q。 接下来 n 行,每行 m 个整数,表示矩阵 a。 接下来 q 行,每行两个整数 xi,yi,表示一次查询初时在第 xi行yi列时她离开迷宫需 要的步数。(819点数解答 | 2025-11-26 19:27:35)50
- [字节豆包] [GESP202503 五级] 原根判断 显示标签 时间限制:C/C++ 1000MS,其他语言 2000MS 内存限制:C/C++ 256MB,其他语言 512MB 难度:未知 分数:100 OI排行榜得分:20(0.1*分数+2*难度) 出题人: 描述 小 A 知道,对于质数 p 而言,p 的原根 g 是满足以下条件的正整数: 1<g<p; g p−1 modp=1; 对于任意 1≤i<p−1 均有 g i modp =1。 其中 amodp 表示 a 除以 p 的余数。 小 A 现在有一个整数 a,请你帮他判断 a 是不是 p 的原根。 输入描述 第一行,一个正整数 T,表示测试数据组数。 每组测试数据包含一行,两个正整数 a,p。 输出描述 对于每组测试数据,输出一行,如果 a 是 p 的原根则输出 Yes,否则输出 No。 用例输入 1 3 3 998244353 5 998244353 7 998244353 用例输出 1 Yes Yes No 提示 【数据范围】 对于 40% 的测试点,保证 3≤p≤10 3 。 对于所有测试(668点数解答 | 2026-02-02 17:30:47)7
- [字节豆包] [GESP202503 五级] 原根判断 显示标签 时间限制:C/C++ 1000MS,其他语言 2000MS 内存限制:C/C++ 256MB,其他语言 512MB 难度:未知 分数:100 OI排行榜得分:20(0.1*分数+2*难度) 出题人: 描述 小 A 知道,对于质数 p 而言,p 的原根 g 是满足以下条件的正整数: 1<g<p; g p−1 modp=1; 对于任意 1≤i<p−1 均有 g i modp =1。 其中 amodp 表示 a 除以 p 的余数。 小 A 现在有一个整数 a,请你帮他判断 a 是不是 p 的原根。 输入描述 第一行,一个正整数 T,表示测试数据组数。 每组测试数据包含一行,两个正整数 a,p。 输出描述 对于每组测试数据,输出一行,如果 a 是 p 的原根则输出 Yes,否则输出 No。 用例输入 1 3 3 998244353 5 998244353 7 998244353 用例输出 1 Yes Yes No 提示 【数据范围】 对于 40% 的测试点,保证 3≤p≤10 3 。 对于所有测试(511点数解答 | 2026-02-03 17:11:00)7
- [字节豆包] 题目描述 称一个数 x 是孤独数,当且仅当 x 是质数且 x 除以 m 的余数是 r。 给出正整数 n,m,r,k,求 1∼n 内第 k 大的孤独数。若不存在输出 −1。 例如,3,5,11,7 这四个数中,从大到小排序时 7 是第 2 名,那么我们说 7 是第二大的。 输入格式 输入一行四个正整数 n,m,r,k,含义见题目描述。 输出格式 输出一行一个整数表示 1∼n 内第 k 大的孤独数,若不存在则输出 −1。 输入样例1 20 3 2 2 输出样例1 11 输入样例2 10000 6 4 1 输出样例2 -1 输入样例3 97 10 7 6 输出样例3 7 说明/提示 【样例 1 解释】 当 m=3,r=2 时,一个数是孤独数当且仅当其是质数,并且除以 3 的余数为 2。 1∼20 的质数有 2,3,5,7,11,13,17,19,其中孤独数有 2,5,11,17。 要求 1∼20 内第 2 大的孤独数,根据上面列举出的结论,答案是 11。 【样例 2 解释】 除以 6 余 4 的数一定是偶数,并且不等于 2,所以一定不是质数。因此,此时不存在孤独数,也(298点数解答 | 2025-11-10 20:01:57)100
- [字节豆包] 题目(description): 卫星导航系统(如我国自主研发的北斗卫星导航系统)能实时获取位置、速度、时间等时空信息,在交通运输、农林渔业、气象测报、通信授时、救灾减灾、公共安全等领域都得到了广泛应用。 在应用层面,卫星导航系统一般以报文方式进行数据传输,其中$gprmc是常用报文之一,基本的格式如下: $gprmc,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh <1> utc时间,hhmmss.sss(时分秒.毫秒)格式 <2> 定位状态,a=有效定位,v=无效定位 <3> 纬度ddmm.mmmm(度分)格式 <4> 纬度半球n(北半球)或s(南半球) <5> 经度dddmm.mmmm(度分)格式 <6> 经度半球e(东经)或w(西经) <7> 地面速率(000.0~999.9节) <8> 地面航向(000.0~359.9度,以正北为参考基准) <9> utc日期,ddmmyy(日月年)格式 <10> 磁偏角(000.0~180.0度,前面的0也(385点数解答 | 2025-01-08 03:43:54)427
- [字节豆包] 题目(description): 卫星导航系统(如我国自主研发的北斗卫星导航系统)能实时获取位置、速度、时间等时空信息,在交通运输、农林渔业、气象测报、通信授时、救灾减灾、公共安全等领域都得到了广泛应用。 在应用层面,卫星导航系统一般以报文方式进行数据传输,其中$gprmc是常用报文之一,基本的格式如下: $gprmc,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh <1> utc时间,hhmmss.sss(时分秒.毫秒)格式 <2> 定位状态,a=有效定位,v=无效定位 <3> 纬度ddmm.mmmm(度分)格式 <4> 纬度半球n(北半球)或s(南半球) <5> 经度dddmm.mmmm(度分)格式 <6> 经度半球e(东经)或w(西经) <7> 地面速率(000.0~999.9节) <8> 地面航向(000.0~359.9度,以正北为参考基准) <9> utc日期,ddmmyy(日月年)格式 <10> 磁偏角(000.0~180.0度,前面的0也(346点数解答 | 2025-01-08 03:46:29)423
- [字节豆包] 请你补全代码,把数组a的所有元素都赋值为100。 输入: 无 输出: 共二十行,每行一个整数,为数组中的每个数。 输入样例: 无 输出样例: 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100#include <iostream> using namespace std; int main() { int a[20]; for ( ) { } for (int i = 0; i < 20; i++) { cout << a[i] << endl; } return 0; }(164点数解答 | 2025-11-01 19:14:57)81
- [字节豆包] 三倍子串 内存限制: 256 Mb时间限制: 1000 ms 题目描述 给定一个十进制正整数 n n,请问可以从 n n 中截取多少种不同的子串,使得子串构成的数字是 3 3 的倍数。 例如:当 n = 1234 n=1234 时,有且仅有 3 3, 12 12, 123 123, 234 234 这四个子串是 3 3 的倍数。 输入格式 单个整数:表示输入的数字 n n 输出格式 单个整数:表示 3 3 的倍数的子串数量。 数据范围 对于 20 % 20% 的数据, 1 ≤ n ≤ 1 0 9 1≤n≤10 9 ; 对于 50 % 50% 的数据, 1 ≤ n ≤ 1 0 100 1≤n≤10 100 ; 对于 70 % 70% 的数据, 1 ≤ n ≤ 1 0 1000 1≤n≤10 1000 ; 对于 100 % 100% 的数据, 1 ≤ n ≤ 1 0 100000 1≤n≤10 100000 样例数据 输入: 95764 输出: 6 说明: 子串6,9,57,576,957,9576是3的倍数 输入: 1111 输出: 2 说(486点数解答 | 2025-08-29 11:52:55)223
- [字节豆包] 你要开始一场数轴旅行,初始时,你所在的位置为 � = 0 x=0 ,你想要去 � = � x=d 位置。 给定 � n 个整数 � 1 , � 2 , . . . , � � a 1 ,a 2 ,...,a n ,表示每次你可以往左移动 � � a i 个单位或往右移动 � � a i 个单位。 请问,最终能否到达 � = � x=d 位置?能则输出 Yes,不能输出 No。 输入 输入共两行: 第一行,两个整数 n,d 第二行,n 个正整数 输出 输出能否达到最终目标位置。 样例输入 复制 2 -4 6 8 样例输出 复制 Yes 提示 对于 30 % 30% 的数据,满足 1 ≤ � ≤ 10 1≤n≤10, 1 ≤ � � ≤ 10 1≤a i ≤10, − 20 ≤ � ≤ 20 −20≤d≤20。 对于 60 % 60% 的数据,满足 1 ≤ � ≤ 1 0 3 1≤n≤10 3 , 1 ≤ � � ≤ 1 0 3 1≤a i ≤10 3 , − 1 0 4 ≤ � ≤ 1 0 4 −10 4 ≤d(225点数解答 | 2026-01-23 19:51:03)27