texts = [v.content for v in df.itertuples()] len(texts) == 3964 import pnlp emds = [] for idx, batch in enumerate(pnlp.generate_batches_by_size(texts, 10)): response = get_embedding_direct(batch) for v in response.data: emds.append(v.embedding) print(f"batch: {idx} done") len(emds), len(emds[0]) == (3964, 1536) 修改问题


你提供的代码片段主要是从数据框 `df` 中提取内容并生成嵌入向量。代码的逻辑是正确的,但有一些地方可以进行优化和改进。 代码优化建议 1. 使用列表推导式:在提取 `texts` 时,可以使用列表推导式来简化代码。 2. 避免重复计算:在 `len(emds)` 和 `len(emds[0])` 的计算中,可以避免重复调用 `len` 函数。 3. 使用 `tqdm` 显示进度:在处理大量数据时,使用 `tqdm` 可以更直观地显示进度。 优化后的代码 ```python from tqdm import tqdm import pnlp # 使用列表推导式提取文本内容 texts = [v.content for v in df.itertuples()] # 初始化嵌入向量列表 emds = [] # 使用 tqdm 显示进度 for idx, batch in tqdm(enumerate(pnlp.generate_batches_by_size(texts, 10)), desc="Processing batches"): response = get_embedding_direct(batch) for v in response.data: emds.append(v.embedding) print(f"batch: {idx} done") # 检查嵌入向量的数量和维度 assert len(emds) == 3964 and len(emds[0]) == 1536, "嵌入向量的数量或维度不正确" ``` 需要注意的逻辑点 1. 数据一致性:确保 `df` 中的 `content` 字段不为空,否则在生成嵌入向量时可能会出错。 2. API 调用限制:`get_embedding_direct` 函数可能有调用频率限制,确保在循环中处理批次时不会触发限制。 3. 内存管理:如果 `texts` 或 `emds` 非常大,考虑分块处理或使用生成器来减少内存占用。 这些优化和改进可以帮助提高代码的可读性和效率,同时确保数据处理的正确性。 [2025-03-21 10:20:06 | AI写代码神器 | 439点数解答]
- texts = [v.content for v in df.itertuples()] len(texts) == 3964 import pnlp emds = [] for idx, batch in enumerate(pnlp.generate_batches_by_size(texts, 10)): response = get_embedding_direct(batch) for v in response.data: emds.append(v.embedding) print(f"batch: {idx} done") len(emds), len(emds[0]) == (3964, 1536) 修改问题 (439点数解答 | 2025-03-21 10:20:06)95
- # 预处理 def load_and_preprocess(file_path): df = pd.read_excel(file_path, engine='openpyxl') df = df.rename(columns={ '评价内容': 'comment', '星级': 'rating' }) # 删除未评论评价以及评论为空的记录 df = df.remove('此用户没有填写评价。') df = df.remove('此用户未及时填写评价内容') df = df.remove('此用户未填写评价内容') df = df.remove('该用户未评价,系统默认好评') df = df.dropna(subset=['comment']) # 去除非文字字符(保留中文、英文、数字) df['comment'] = df['comment'].apply(lambda x: re.sub(r'[^\w\u4e00-\u9fff]', '', (635点数解答 | 2025-06-25 15:46:50)78
- def xor_decrypt(ciphertext): # 使用列表推导式优化解密过程 decrypted_bytes = bytearray(ciphertext, 'utf-8') decrypted_bytes = bytearray([byte ^ idx for idx, byte in enumerate(decrypted_bytes)]) return decrypted_bytes.decode('utf-8') def caesardecrypt(ciphertext, key): key_bytes = bytearray(key, 'utf-8') plaintext_chars = [] for idx, char in enumerate(ciphertext): if char in "_{}": # 保留特殊字符 plaintext_chars.append(char) else: char_code(309点数解答 | 2024-09-26 23:42:47)172
- import javax.swing.*; import java.awt.*; import java.awt.datatransfer.clipboard; import java.awt.datatransfer.stringselection; import java.awt.datatransfer.transferable; import java.awt.event.*; import java.io.*; import java.nio.file.files; import java.nio.file.path; import java.nio.file.paths; import java.time.localdatetime; import java.util.hashmap; import java.util.list; import java.util.map; import java.util.random; public class copy { static private final jtextarea textarea = new jtext(1497点数解答 | 2024-08-25 09:40:33)321
- import openpyxl import smtplib import imaplib import email import json import os import re from bs4 import BeautifulSoup from fastapi import FastAPI, Form from openpyxl.styles import Alignment from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.header import decode_header from email import encoders import pandas as pd app = FastAPI() RECEIVER_EMAILS = { 0: "yundongshijie001@protonmail.com", 1: "xiaobudian001@protonmail.com" } email_address = "(182点数解答 | 2025-04-12 00:49:09)163
- from kivy.app import app from kivy.uix.button import button from kivy.uix.boxlayout import boxlayout from kivy.uix.filechooser import filechooserlistview from kivy.uix.popup import popup from kivy.uix.label import label from kivy.uix.screenmanager import screenmanager, screen from kivy.core.window import window from kivy.uix.treeview import treeview, treeviewlabel from unitypy import assetsmanager from unitypy.exceptions import unitypyerror import os from pil import image import time class file(262点数解答 | 2024-12-01 17:07:07)217
- package com.example.weather; import android.content.context; import android.media.mediaplayer; import android.net.uri; import android.os.bundle; import android.util.log; import android.view.layoutinflater; import android.view.view; import android.view.viewgroup; import android.webkit.websettings; import android.webkit.webview; import android.webkit.webviewclient; import android.widget.videoview; import androidx.fragment.app.fragment; public class realtimemonitoringfragment extends fragment {(30点数解答 | 2024-10-12 10:31:18)226
- package com.example.weather; import android.content.context; import android.media.mediaplayer; import android.net.uri; import android.os.bundle; import android.util.log; import android.view.layoutinflater; import android.view.view; import android.view.viewgroup; import android.webkit.websettings; import android.webkit.webview; import android.webkit.webviewclient; import android.widget.videoview; import androidx.fragment.app.fragment; public class realtimemonitoringfragment extends fragment {(531点数解答 | 2024-10-12 10:32:25)206
- #include "videoplayer.h" #include "log.h" #pragma warning(disable: 4996) //buffer: static int audio_len = 0; static uint8* audio_pos; void videoplayer::audiocallback(void* userdata, uint8_t* stream, int len) { sdl_memset(stream, 0, len); if (audio_len <= 0) return; len = (len > audio_len ? audio_len : len); /* mix as much data as possible */ sdl_mixaudio(stream, audio_pos, len, sdl_mix_maxvolume); audio_pos += len; audio_len -= len; } videoplayer::videop(549点数解答 | 2024-08-08 15:59:25)221
- import os import datetime from flask import Flask, request, jsonify import requests from flask_cors import CORS import re import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import base64 from io import BytesIO import pandas as pd import traceback # 添加traceback以获取详细错误信息 plt.rcParams["font.sans-serif"] = ["SimHei"] app = Flask(__name__) CORS(app) FASTGPT_API_URL = 'http://localhost:3000/api/v1/chat/completions' FASTGPT_API_KEY = 'fastgpt-gWzitHpBa8XRr0q(713点数解答 | 2025-06-18 16:00:34)117
- import numpy as np import math import xlrd #读excel数据用 from operator import itemgetter #排序用 import pandas as pd import random import matplotlib.pyplot as plt #*******************************读取数据************************************* # 读取excel数据,储存用户数据,出发点编号为0,用户1的编号为1,用户120的编号为120 data = pd.read_excel('data.xlsx', engine='openpyxl') print(data) # 获取节点坐标和需求 # 假设excel文件的第一列是x坐标,第二列是y坐标,第三列是需求 x = data.iloc[:, 0].tolist() # 获取所有行的第一列数据 y = data.iloc[:, 1].tolist() # 获取所有行的第二列数据 demands(2729点数解答 | 2024-11-25 15:32:50)184
- try: stock_list=[] with open(r'{}'.format(path),'r+') as f: com=f.readlines() for i in com: i=i.strip() if len(str(i))>0: stock_list.append(i) df=pd.dataframe() df['证券代码']=stock_list df['证券代码']=df['证券代码'].apply(lambda x:str(x)[-6:]) return df(294点数解答 | 2024-12-07 13:50:32)134