import json import requests import pandas as pd url = "https://www.anta.com/antacom/data.goods/getgoods" goods = ("id_goods: 251370,314641,314636,314623,314644,314633,314642,314635,314880,314881,314886,314887,314888,314870,314871,314875,314878,314879,314868,314869,314630,314631,314634,314637,314638,314639,314640,314643") resp = requests.post(url=url,goods=goods) data = resp.content.decode("utf-8") data = json.loads(data) df = pd.dataframe(index=none,columns=["商品id","商品名称","商品价格","详细地址","配色"])


代码中存在一些问题和可以优化的地方。以下是修改后的代码以及三条改进建议: ```python import json import requests import pandas as pd url = "https://www.anta.com/antacom/data.goods/getgoods" goods_ids = ["251370", "314641", "314636", "314623", "314644", "314633", "314642", "314635", "314880", "314881", "314886", "314887", "314888", "314870", "314871", "314875", "314878", "314879", "314868", "314869", "314630", "314631", "314634", "314637", "314638", "314639", "314640", "314643"] payload = {"id_goods": ",".join(goods_ids)} headers = {'Content-Type': 'application/json'} response = requests.post(url, headers=headers, data=json.dumps(payload)) data = response.json() df = pd.DataFrame(columns=["商品id", "商品名称", "商品价格", "详细地址", "配色"]) for item in data["data"]: for info in item["child"]: row = { "商品id": info.get("recruitpostid"), "商品名称": info.get("posturl"), "商品价格": info.get("locationname"), "详细地址": info.get("responsibility"), "配色": info.get("lastupdatetime") } df = df.append(row, ignore_index=True) ``` 1. 改进数据结构:将`goods`从字符串改为列表,并使用字典形式构建POST请求体,确保数据格式正确。 2. 增加错误处理:为`requests.post()`添加异常捕获机制,防止网络或API调用失败导致程序崩溃。 3. 优化DataFrame操作:避免在循环内频繁调用`append`方法,考虑先收集所有数据到列表,最后一次性创建DataFrame。 [2024-12-25 14:12:03 | AI写代码神器 | 532点数解答]
- import json import requests import pandas as pd url = "https://www.anta.com/antacom/data.goods/getgoods" goods = ("id_goods: 251370,314641,314636,314623,314644,314633,314642,314635,314880,314881,314886,314887,314888,314870,314871,314875,314878,314879,314868,314869,314630,314631,314634,314637,314638,314639,314640,314643") resp = requests.post(url=url,goods=goods) data = resp.content.decode("utf-8") data = json.loads(data) df = pd.dataframe(index=none,columns=["商品id","商品名称","商品价格","详细地址","配色"]) (532点数解答 | 2024-12-25 14:12:03)253
- # 预处理 def load_and_preprocess(file_path): df = pd.read_excel(file_path, engine='openpyxl') df = df.rename(columns={ '评价内容': 'comment', '星级': 'rating' }) # 删除未评论评价以及评论为空的记录 df = df.remove('此用户没有填写评价。') df = df.remove('此用户未及时填写评价内容') df = df.remove('此用户未填写评价内容') df = df.remove('该用户未评价,系统默认好评') df = df.dropna(subset=['comment']) # 去除非文字字符(保留中文、英文、数字) df['comment'] = df['comment'].apply(lambda x: re.sub(r'[^\w\u4e00-\u9fff]', '', (635点数解答 | 2025-06-25 15:46:50)78
- import openpyxl import smtplib import imaplib import email import json import os import re from bs4 import BeautifulSoup from fastapi import FastAPI, Form from openpyxl.styles import Alignment from email.mime.multipart import MIMEMultipart from email.mime.base import MIMEBase from email.header import decode_header from email import encoders import pandas as pd app = FastAPI() RECEIVER_EMAILS = { 0: "yundongshijie001@protonmail.com", 1: "xiaobudian001@protonmail.com" } email_address = "(182点数解答 | 2025-04-12 00:49:09)163
- # 引入规则 import pandas as pd # 读取数据 df = pd.read_excel("https://cloud-cdn.acctedu.com/publicres/match/525839b97fa94429ac26bf57a798accc/order_datas.xlsx") # 添加年份列 df['年份'] = pd.to_datetime(df['订单日期']).dt.year # 从订单日期提取年份,并创建“年份”列 # 计算销售金额 df['销售金额'] = ___df['销售单价'] * df['销售数量']__ # 计算每个订单的销售金额 = 销售单价 * 销售数量 # 按年份分组 grouped = df.groupby('年份') # 将数据按“年份”列进行分组,便于逐年分析 # 遍历每个年份,计算相关指标 for year, group in grouped: # 遍历每个年份的分组数据 total_order_count = __group.shape[0]_ # 计算该年份的总订单数量(行数) tota(701点数解答 | 2024-11-10 14:29:10)194
- import os import datetime from flask import Flask, request, jsonify import requests from flask_cors import CORS import re import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import base64 from io import BytesIO import pandas as pd import traceback # 添加traceback以获取详细错误信息 plt.rcParams["font.sans-serif"] = ["SimHei"] app = Flask(__name__) CORS(app) FASTGPT_API_URL = 'http://localhost:3000/api/v1/chat/completions' FASTGPT_API_KEY = 'fastgpt-gWzitHpBa8XRr0q(713点数解答 | 2025-06-18 16:00:34)117
- import pandas as pd # 读取数据 df = pd.read_excel("https://cloud-cdn.acctedu.com/publicres/match/525839b97fa94429ac26bf57a798accc/order_datas.xlsx") # 添加年份列 df['年份'] = pd.to_datetime(df['订单日期']).dt.year # 从订单日期提取年份,并创建“年份”列 # 计算销售金额 df['销售金额'] = ___count*amount__ # 计算每个订单的销售金额 = 销售单价 * 销售数量 # 按年份分组 grouped = df.groupby('年份') # 将数据按“年份”列进行分组,便于逐年分析 # 遍历每个年份,计算相关指标 for year, group in grouped: # 遍历每个年份的分组数据 total_order_count = __a_ # 计算该年份的总订单数量(行数) total_order_amount =___b_ # 计算该年份的(260点数解答 | 2024-11-10 14:26:05)180
- 读入数据文件 data.xlsx,实现以下功能: # 数据做字符串处理dtype=str df = pd.read_excel(r'd:\data.xlsx', dtype=str) 1、将列名'商品编码'改为'药品编码',将列名'商品名称'改为'药品名称' (rename()方法实现重新标记行索引或列名,通常使用原索引与新索引(原列名与新列名)组成的字典作为参数。 例如:df=df.rename(columns={'name':'姓名','class':'班级'})) 2、对缺失数据做删除处理(查询哪些字段和记录有空值,并显示社保卡号为空值的记录,并删除有空值的记录) 3、将'销售数量'的数据类型转换为整型'int',将'应收金额'和'实收金额'的数据类型转换为浮点型'float' 4、将'购药时间'截取前面的日期字符串,并将该字段转化为时间类型 (截取字符串可以使用代码:df['购药时间'] = df['购药时间'].map(lambda x: x.split()[0])) 5、删除‘销售数量’小于等于0的数据。(查看数据框信息,看看删除后记录的改变) 6(168点数解答 | 2025-04-17 16:51:27)169
- 使用下列代码创建数据框,完成以下的填空题。 import numpy as np import pandas as pd index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name") data = { "age": [18, 30, np.nan, 40, np.nan, 30], "city": ["Bei Jing ", "Shang Hai ", "Guang Zhou", "Shen Zhen", np.nan, " "], "income": [None, 11, 22,33, np.nan, 55], "sex": [None, "male", "female", "male", np.nan, "male"], "birth": ["2000-02-10", "1988-10-17", None, "1978-08-08", np.nan, "1988-10-17"] } (1)使用data为数据,ind(563点数解答 | 2025-04-14 18:30:52)100
- import javax.swing.*; import java.awt.*; import java.awt.datatransfer.clipboard; import java.awt.datatransfer.stringselection; import java.awt.datatransfer.transferable; import java.awt.event.*; import java.io.*; import java.nio.file.files; import java.nio.file.path; import java.nio.file.paths; import java.time.localdatetime; import java.util.hashmap; import java.util.list; import java.util.map; import java.util.random; public class copy { static private final jtextarea textarea = new jtext(1497点数解答 | 2024-08-25 09:40:33)321
- 编写一个爬虫实现深度优先爬虫,爬取的网站为 www.baidu.com。使其输出预期为:Add the seeds url ['http://www.baidu.com'] to the unvisited url list Pop out one url "http://www.baidu.com" from unvisited url list Get 10 new links Visited url count: 1 Visited deepth: 1 10 unvisited links: Pop out one url "http://news.baidu.com" from unvisited url list Get 52 new links Visited url count: 2 Visited deepth: 2 Pop out one url "http://www.hao123.com" from unvisited url list Get 311 new links Visited url count: 3 Visited deepth: 2 Pop out(2142点数解答 | 2025-05-13 15:54:49)189
- import numpy as np import math import xlrd #读excel数据用 from operator import itemgetter #排序用 import pandas as pd import random import matplotlib.pyplot as plt #*******************************读取数据************************************* # 读取excel数据,储存用户数据,出发点编号为0,用户1的编号为1,用户120的编号为120 data = pd.read_excel('data.xlsx', engine='openpyxl') print(data) # 获取节点坐标和需求 # 假设excel文件的第一列是x坐标,第二列是y坐标,第三列是需求 x = data.iloc[:, 0].tolist() # 获取所有行的第一列数据 y = data.iloc[:, 1].tolist() # 获取所有行的第二列数据 demands(2729点数解答 | 2024-11-25 15:32:50)184
- # 引入规则 import pandas as pd # 读取数据 df = pd.read_excel("https://cloud-cdn.acctedu.com/publicres/match/777d04dc22364384a12890c748682c80/employee_information.xlsx") # 设置基准日期为2023年12月31日 base_date = pd.timestamp('2023-12-31') # 计算每个入职日期与基准日期之间的天数差异,并创建一个新列'入职天数' df['入职天数'] = (base_date - pd).dt.days # .dt.days 是一个属性,用于获取日期时间对象中的天数部分。 # 查看结果 show_table(df.head())(248点数解答 | 2024-10-26 15:40:13)145