from torch.nn.utils.rnn import pad_sequence ''' 创建dataset数据集和dataloader数据加载器 1.创建数据集类,并在数据集内将文本转化为向量。 2.构造处理函数collate_fn,作用是对句子进行填充,使得每个batch内句子长度相同。 3.创建数据集实例。 4.设置batch size大小,创建数据加载器实例。 ''' # 创建dataset和dataloader class textdataset(dataset): def __init__(self, data): # 初始化函数,接受数据作为参数 # 将输入文本的句子列表进行分词,并将每个词转换为词表中的id # 为方便直接在此处理 self.sequences = [[vocab.get(word, vocab.get(unk)) for word in sentence] for sentence in tokenizer(data['text'].values)]
以下是为您补充完整的创建 `Dataset` 和 `DataLoader` 的代码示例: ```python import torch from torch.utils.data import Dataset, DataLoader from torch.nn.utils.rnn import pad_sequence from transformers import BertTokenizer # 假设 vocab 是词表,unk 是未知词标记 class TextDataset(Dataset): def __init__(self, data): # 初始化函数,接受数据作为参数 self.data = data # 将输入文本的句子列表进行分词,并将每个词转换为词表中的 id self.sequences = [[vocab.get(word, vocab.get(unk)) for word in sentence] for sentence in tokenizer(data['text'].values)] def __len__(self): return len(self.sequences) def __getitem__(self, index): return self.sequences[index] def collate_fn(batch): # 对句子进行填充,使得每个 batch 内句子长度相同 return pad_sequence([torch.tensor(seq) for seq in batch], batch_first=True) # 示例数据 data = {'text': ['This is a sample sentence.', 'Another example here.']} tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # 创建数据集实例 dataset = TextDataset(data) # 设置 batch size 大小,创建数据加载器实例 batch_size = 32 dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn) ``` [2024-11-03 11:46:00 | AI写代码神器 | 338点数解答]
- [字节豆包] from torch.nn.utils.rnn import pad_sequence ''' 创建dataset数据集和dataloader数据加载器 1.创建数据集类,并在数据集内将文本转化为向量。 2.构造处理函数collate_fn,作用是对句子进行填充,使得每个batch内句子长度相同。 3.创建数据集实例。 4.设置batch size大小,创建数据加载器实例。 ''' # 创建dataset和dataloader class textdataset(dataset): def __init__(self, data): # 初始化函数,接受数据作为参数 # 将输入文本的句子列表进行分词,并将每个词转换为词表中的id # 为方便直接在此处理 self.sequences = [[vocab.get(word, vocab.get(unk)) for word in sentence] for sentence in tokenizer(data['text'].values)](338点数解答 | 2024-11-03 11:46:00)186
- [字节豆包] ```python def reverse_sentence(sentence): words = sentence.split() reversed_words = [] for word in words[::-1]: if word.islower(): reversed_words.append(word.upper()) elif word.isupper(): reversed_words.append(word.lower()) elif word.isdigit(): reversed_words.append(word[::-1]) else: reversed_words.append(word) return " ".join(reversed_words) sentence = input() print(reverse_sentence(sentence)) ```用C(803点数解答 | 2025-10-25 10:06:05)66
- [DeepSeek] ```python def reverse_sentence(sentence): words = sentence.split() reversed_words = [] for word in words[::-1]: if word.islower(): reversed_words.append(word.upper()) elif word.isupper(): reversed_words.append(word.lower()) elif word.isdigit(): reversed_words.append(word[::-1]) else: reversed_words.append(word) return " ".join(reversed_words) sentence = input() print(reverse_sentence(sentence)) ```用C(703点数解答 | 2025-10-25 10:07:45)129
- [字节豆包] class loaddata(dataset): def __init__(self, csv_file): # 读取数据 data = pd.read_csv(csv_file, parse_dates=['timestamp'], index_col='timestamp', dayfirst=true) self.data = self.prepare_daily_samples(data['household 200']) # 处理缺失值和异常值 self.data = self.handle_missing_and_outliers(self.data) # 数据最大值归一化处理 self.scaler = minmaxscaler() self.data = self.scaler.fit_transform(self.data.reshape(-1, self.data.shape[-1])).reshape(self(34点数解答 | 2024-11-09 10:50:56)301
- [讯飞星火] ```c #include <stdio.h> #include <string.h> #include <ctype.h> void reverseWord(char *word) { int len = strlen(word); for (int i = 0; i < len / 2; i++) { char temp = word[i]; word[i] = word[len - i - 1]; word[len - i - 1] = temp; } } void processWord(char *word) { if (isdigit(word[0])) { reverseWord(word); } else if (islower(word[0])) { for (int i = 0; i < strlen(word); i++) { word[i] = toupper(word[i]); } } el(1192点数解答 | 2025-11-26 09:45:04)41
- [GPT] import socket import threading import tkinter as tk from tkinter import scrolledtext, messagebox, simpledialog, filedialog import traceback class chatclient: def __init__(self, root): self.root = root self.root.title("pytalk") self.root.geometry("500x600") self.sock = none self.main_menu() def main_menu(self): for widget in self.root.winfo_children(): widget.destroy() self.label = tk.label(self.root, text="欢迎来到pytalk(1469点数解答 | 2024-10-30 13:14:13)296
- [字节豆包] 只修改g_best和p_best这两行代码import random class point(object): def __init__(self, x, v): self.x_list = [x] self.v_list = [v] self.fit_list = [] class pso(object): def __init__(self): # 学习因子 self.c1 = 2.0 self.c2 = 2.0 # 种群数量 self.m = 5 # 惯性因子 self.w = 0.5 # 迭代次数 self.iter_num = 100 # 定义域 self.x_bound = (0, 31) self.group = self._init_x_list() # 得分函数 @staticmetho(298点数解答 | 2024-10-29 21:10:07)261
- [字节豆包] 继承以上rect类,设计一个newrect类,要求添加一个数据成员,用以存放矩形位置, 位置坐标通常为矩形左上角坐标,用元组表示,例如(x,y),然后 修改构造方法; 设计move()方法,将矩形从一个位置移动到另一个位置; 设计size()方法改变矩形大小; 设计where()返回矩形左上角的坐标值。 class rect: def __init__(self,length,width): self.length=length self.width=width def perimeter(self): return 2*(self.length+self.width) def area(self): return self.length*self.width def show(self): print("该矩形的信息如下:") print("长=",self.length,end=",") p(110点数解答 | 2025-01-02 23:42:09)248
- [字节豆包] 继承以上rect类,设计一个newrect类,要求添加一个数据成员,用以存放矩形位置, 位置坐标通常为矩形左上角坐标,用元组表示,例如(x,y),然后 修改构造方法; 设计move()方法,将矩形从一个位置移动到另一个位置; 设计size()方法改变矩形大小; 设计where()返回矩形左上角的坐标值。 class rect: def __init__(self,length,width): self.length=length self.width=width def perimeter(self): return 2*(self.length+self.width) def area(self): return self.length*self.width def show(self): print("该矩形的信息如下:") print("长=",self.length,end=",") p(94点数解答 | 2025-01-02 23:42:11)241
- [字节豆包] 继承以上rect类,设计一个newrect类,要求添加一个数据成员,用以存放矩形位置, 位置坐标通常为矩形左上角坐标,用元组表示,例如(x,y),然后 修改构造方法; 设计move()方法,将矩形从一个位置移动到另一个位置; 设计size()方法改变矩形大小; 设计where()返回矩形左上角的坐标值。 class rect: def __init__(self,length,width): self.length=length self.width=width def perimeter(self): return 2*(self.length+self.width) def area(self): return self.length*self.width def show(self): print("该矩形的信息如下:") print("长=",self.length,end=",") p(94点数解答 | 2025-01-02 23:42:12)253
- [GPT] class student: def __init__(self, name, chinese, math, english, physics, chemistry, biology, politics, history, geography): self.name = name self.chinese = chinese self.math = math self.english = english self.physics = physics self.chemistry = chemistry self.biology = biology self.politics = politics self.history = history self.geography = geography self.total_score = chinese + math + english + physics +(474点数解答 | 2024-12-01 20:47:57)285
- [字节豆包] class student: def __init__(self, name, chinese, math, english, physics, chemistry, biology, politics, history, geography): self.name = name self.chinese = chinese self.math = math self.english = english self.physics = physics self.chemistry = chemistry self.biology = biology self.politics = politics self.history = history self.geography = geography self.total_score = chinese + math + english + physics +(123点数解答 | 2024-12-01 20:51:20)331