用matlab帮我解决一个问题如下:在窗边框(窗外边框)的生产过程中,窗框的尺寸和形状对建筑物的外观和功能有重要影响。在加工过程中,原材料(如铝合金、钢材等)往往是长条形的,通常需要根据不同订单的需求进行切割,确保每个窗框的尺寸符合要求。窗框的切割方案需要考虑用户的目标尺寸及其目标范围,同时还需要计算锯口宽度对切割损失的影响。 此外,在生产过程中,原材料可能存在不规则缺陷,缺陷的具**置和大小是随机的,这要求生产过程中能及时调整切割方案,避开缺陷区域,确保窗框的质量,并最大化利用原材料。每次切割时需要考虑锯口宽度的影响,即切割机的切割占用宽度。 假设每个订单包含多个窗框的需求,并且每个窗框有其目标宽度、目标高度以及目标范围(即目标尺寸的允许误差范围)。每次切割时,需要考虑锯口宽度对实际切割尺寸的影响。要求在剩余原材料的长度内,尽量满足订单的目标尺寸,并尽可能减少切割损失。表1是具体的订单需求: 表1: 订单的具体切割需求 订单号 订单需求对象 订单量(套) 宽度目标(米) 高度目标(米) 窗框单价(元/套) 1 学校教学楼 10 1.6 2.2 480 2 酒店客房 20 1.8 2.


以下是一个用 MATLAB 解决该窗框切割问题的代码: ```matlab % 订单信息 order_info = [ 1, '学校教学楼', 10, 1.6, 2.2, 480; 2, '酒店客房', 20, 1.8, 2.4, 680; 3, '医院病房', 20, 1.7, 2.3, 550; 4, '办公楼', 15, 1.5, 2.0, 420 ]; order_quantity = order_info(:, 3); width_target = order_info(:, 4); height_target = order_info(:, 5); window_price = order_info(:, 6); % 原材料信息 raw_materials = [ 5.5, 18; 6.2, 22; 7.8, 28 ]; raw_lengths = raw_materials(:, 1); raw_prices = raw_materials(:, 2); % 锯口宽度 saw_width = 0.005; % 缺陷信息 defects = [ 1, 5.5, 1.0, 0.03; 1, 5.5, 2.5, 0.04; 2, 6.2, 0.5, 0.02; 2, 6.2, 1.8, 0.05; 3, 7.8, 3.0, 0.03 ]; % 允许误差范围 tolerance = 0.01; % 初始化变量 total_windows = sum(order_quantity); total_width_needed = 2 * sum(order_quantity .* width_target); total_height_needed = 2 * sum(order_quantity .* height_target); total_needed = total_width_needed + total_height_needed; % 生成所有可能的切割方案 all_schemes = {}; for i = 1:length(raw_lengths) current_length = raw_lengths(i); current_defects = defects(defects(:, 1) == i, 3:4); % 这里可以添加生成切割方案的逻辑,暂时简化为示例 % 假设简单的枚举所有可能的组合 possible_widths = width_target - tolerance:0.001:width_target + tolerance; possible_heights = height_target - tolerance:0.001:height_target + tolerance; for j = 1:length(possible_widths) for k = 1:length(possible_heights) % 检查是否与缺陷冲突 valid = true; for d = 1:size(current_defects, 1) defect_start = current_defects(d, 1); defect_end = defect_start + current_defects(d, 2); % 检查切割是否与缺陷冲突 if (defect_start < possible_widths(j) && defect_end > 0) || (defect_start < possible_heights(k) && defect_end > 0) valid = false; break; end end if valid all_schemes{end + 1} = [i, possible_widths(j), possible_heights(k)]; end end end end % 选择最优切割方案,这里简单选择成本最低的方案,可根据实际情况优化 best_scheme = []; min_cost = Inf; for i = 1:length(all_schemes) current_scheme = all_schemes{i}; % 计算该方案的成本和收益 % 这里简单假设该方案可以满足所有需求,实际需要更复杂的逻辑 current_cost = raw_prices(current_scheme(1)); if current_cost < min_cost min_cost = current_cost; best_scheme = current_scheme; end end % 计算切割损失率和利用率 used_length = 2 * best_scheme(2) + 2 * best_scheme(3) + 3 * saw_width; % 3 个锯口 current_raw_length = raw_lengths(best_scheme(1)); cutting_loss = current_raw_length - used_length; cutting_loss_rate = cutting_loss / current_raw_length; utilization_rate = used_length / current_raw_length; % 计算总收益和总成本 total_revenue = sum(order_quantity .* window_price); total_cost = min_cost; profit = total_revenue - total_cost; % 输出结果 fprintf('最优切割方案:使用第 %d 种原材料,切割宽度 %.3f 米,切割高度 %.3f 米\n', best_scheme(1), best_scheme(2), best_scheme(3)); fprintf('切割损失率:%.2f%%\n', cutting_loss_rate * 100); fprintf('利用率:%.2f%%\n', utilization_rate * 100); fprintf('总收益:%.2f 元\n', total_revenue); fprintf('总成本:%.2f 元\n', total_cost); fprintf('总利润:%.2f 元\n', profit); ``` 额外需要注意的逻辑点 1. 生成切割方案时,需要更严谨地考虑锯口宽度对剩余材料长度的影响,确保每个切割方案都是可行的。 2. 检查切割是否与缺陷冲突的逻辑可以进一步优化,特别是在处理多个缺陷区域的复杂情况时。 3. 选择最优切割方案的逻辑目前比较简单,实际应用中需要考虑更多因素,如是否能完全满足订单需求、剩余材料的可再利用性等。 [2025-07-18 16:35:35 | AI写代码神器 | 1326点数解答]
- 编程实现一个简单的密码设置系统,从键盘输入字符命令,分别实现相应的功能。 初始化设置密码为123456,等待命令输入: (1)输入字符‘1’,功能:密码确认。提示输入密码,密码正确,返回“密码正确”,否则返回密码错误。 (2)输入字符‘2’,功能:设置密码。输入设置密码后,系统提示设置正确。 (3)输入字符‘3’,功能:显示密码。 (4)输入字符‘4’,功能:重置密码。密码重置为6个0; (5)输入字符‘0’,功能:系统退出。 (6)输入其他字符,系统提示输入错误请重新输入。 (286点数解答 | 2025-03-28 10:43:21)230
- 编程实现一个简单的密码设置系统,从键盘输入字符命令,分别实现相应的功能。 初始化设置密码为123456,等待命令输入: (1)输入字符‘1’,功能:密码确认。提示输入密码,密码正确,返回“密码正确”,否则返回密码错误。 (2)输入字符‘2’,功能:设置密码。输入设置密码后,系统提示设置正确。 (3)输入字符‘3’,功能:显示密码。 (4)输入字符‘4’,功能:重置密码。密码重置为6个0; (5)输入字符‘0’,功能:系统退出。 (6)输入其他字符,系统提示输入错误请重新输入。 用c语言 (414点数解答 | 2025-03-28 10:43:55)222
- 程实现一个简单的密码设置系统,从键盘输入字符命令,分别实现相应的功能。 初始化设置密码为123456,等待命令输入: (1)输入字符‘1’,功能:密码确认。提示输入密码,密码正确,返回“密码正确”,否则返回密码错误。 (2)输入字符‘2’,功能:设置密码。输入设置密码后,系统提示设置正确。 (3)输入字符‘3’,功能:显示密码。 (4)输入字符‘4’,功能:重置密码。密码重置为6个0; (5)输入字符‘0’,功能:系统退出。 (6)输入其他字符,系统提示输入错误请重新输入 用c语言 (519点数解答 | 2025-03-28 12:42:02)261
- 初始化设置密码为123456,等待命令输入: (1)输入字符‘1’,功能:密码确认。提示输入密码,密码正确,返回“密码正确”,否则返回密码错误。 (2)输入字符‘2’,功能:设置密码。输入设置密码后,系统提示设置正确。 (3)输入字符‘3’,功能:显示密码。 (4)输入字符‘4’,功能:重置密码。密码重置为6个0; (5)输入字符‘0’,功能:系统退出。 (6)输入其他字符,系统提示输入错误请重新输入。 用c语言(409点数解答 | 2025-04-05 18:09:56)218
- 初始化设置密码为123456,等待命令输入: (1)输入字符‘1’,功能:密码确认。提示输入密码,密码正确,返回“密码正确”,否则返回密码错误。 (2)输入字符‘2’,功能:设置密码。输入设置密码后,系统提示设置正确。 (3)输入字符‘3’,功能:显示密码。 (4)输入字符‘4’,功能:重置密码。密码重置为6个0; (5)输入字符‘0’,功能:系统退出。 (6)输入其他字符,系统提示输入错误请重新输入。 用c语言 (454点数解答 | 2025-04-05 18:48:42)210
- 初始化设置密码为123456,等待命令输入: (1)输入字符‘1’,功能:密码确认。提示输入密码,密码正确,返回“密码正确”,否则返回密码错误。 (2)输入字符‘2’,功能:设置密码。输入设置密码后,系统提示设置正确。 (3)输入字符‘3’,功能:显示密码。 (4)输入字符‘4’,功能:重置密码。密码重置为6个0; (5)输入字符‘0’,功能:系统退出。 (6)输入其他字符,系统提示输入错误请重新输入 C语言 (413点数解答 | 2025-04-06 15:37:16)161
- 初始化设置密码为123456,等待命令输入: (1)输入字符‘1’,功能:密码确认。提示输入密码,密码正确,返回“密码正确”,否则返回密码错误。 (2)输入字符‘2’,功能:设置密码。输入设置密码后,系统提示设置正确。 (3)输入字符‘3’,功能:显示密码。 (4)输入字符‘4’,功能:重置密码。密码重置为6个0; (5)输入字符‘0’,功能:系统退出。 (6)输入其他字符,系统提示输入错误请重新输入 C语言(403点数解答 | 2025-04-06 15:37:54)180
- sql2008数据库有3张表,雇员(雇员号,姓名),订单(订单号,雇员号),订单明细(订单明细号,订单号),查询结果显示姓名号,订单号,订单明细号,结果按姓名,订单号,订单明细号升序排列(148点数解答 | 2024-12-05 08:48:24)184
- 问题1 假设每个订单包含多个窗框的需求,并且每个窗框有其目标宽度、目标高度以及目标范围(即目标尺寸的允许误差范围)。每次切割时,需要考虑锯口宽度对实际切割尺寸的影响。要求在剩余原材料的长度内,尽量满足订单的目标尺寸,并尽可能减少切割损失。表1是具体的订单需求: 表1: 订单的具体切割需求 订单号 订单需求对象 订单量(套) 宽度目标(米) 高度目标(米) 窗框单价(元/套) 1 学校教学楼 10 1.6 2.2 480 2 酒店客房 20 1.8 2.4 680 3 医院病房 20 1.7 2.3 550 4 **办公楼 15 1.5 2.0 420 宽度和高度可以在给定尺寸的基础上有0.01米的变化范围,制作一个完整的窗框需要两个高和两个宽。已知原材料的长度分别为:5.5米、6.2米、7.8米,单价分别为18元/根、22元/根和28元/根,原材料的数量不限,锯口宽度为0.005米。请根据原材料的长度,在尽可能满足用户需求的情况下,建立数学模型,给出最优切割方案,实现利润最大化(总成本(原材料成本)与总收益(窗框销售收益)的差值),并计算所给方案整体的切割损失率及利用率。 问题2 假设(1192点数解答 | 2025-08-09 09:51:32)61
- 假设每个订单包含多个窗框的需求,并且每个窗框有其目标宽度、目标高度以及目标范围(即目标尺寸的允许误差范围)。每次切割时,需要考虑锯口宽度对实际切割尺寸的影响。要求在剩余原材料的长度内,尽量满足订单的目标尺寸,并尽可能减少切割损失。表1是具体的订单需求: 表1: 订单的具体切割需求 订单号 订单需求对象 订单量(套) 宽度目标(米) 高度目标(米) 窗框单价(元/套) 1 学校教学楼 10 1.6 2.2 480 2 酒店客房 20 1.8 2.4 680 3 医院病房 20 1.7 2.3 550 4 **办公楼 15 1.5 2.0 420 宽度和高度可以在给定尺寸的基础上有0.01米的变化范围,制作一个完整的窗框需要两个高和两个宽。已知原材料的长度分别为:5.5米、6.2米、7.8米,单价分别为18元/根、22元/根和28元/根,原材料的数量不限,锯口宽度为0.005米。请根据原材料的长度,在尽可能满足用户需求的情况下,建立数学模型,给出最优切割方案,实现利润最大化(总成本(原材料成本)与总收益(窗框销售收益)的差值),并计算所给方案整体的切割损失率及利用率。 说明: (1)利用(1809点数解答 | 2025-05-01 16:57:40)191
- 一是未充分调动干部自学积极性。尽管定期组织学习中央八项规定精神有关内容,但多以集中领学文件为主,未能有效引导个人自学,也缺乏多样化形式,导致干部学习热情和主动性不足。二是学习研讨参与度不均衡。学习教育工作开展期间,部分领导干部发言积极,普通党员干部参与度不高,存在“旁观者”现象。研讨过程中,结合实际工作讨论不够紧密,未将规定精神有效融入日常业务,无法充分发挥学习指导实践的作用。三是问题查摆不够精准。部分党员干部问题查摆缺乏针对性,未结合自身岗位特点和工作实际,存在“通用问题多、个性问题少”的情况。针对存在问题,提出下步工作打算,要质量高的问题,最好可以让材料一遍过,领导不修改(767点数解答 | 2025-08-07 17:07:03)88
- 在窗边框(窗外边框)的生产过程中,窗框的尺寸和形状对建筑物的外观和功能有重要影响。在加工过程中,原材料(如铝合金、钢材等)往往是长条形的,通常需要根据不同订单的需求进行切割,确保每个窗框的尺寸符合要求。窗框的切割方案需要考虑用户的目标尺寸及其目标范围,同时还需要计算锯口宽度对切割损失的影响。 此外,在生产过程中,原材料可能存在不规则缺陷,缺陷的具**置和大小是随机的,这要求生产过程中能及时调整切割方案,避开缺陷区域,确保窗框的质量,并最大化利用原材料。每次切割时需要考虑锯口宽度的影响,即切割机的切割占用宽度。 请建立数学模型,解决以下问题: 问题1 假设每个订单包含多个窗框的需求,并且每个窗框有其目标宽度、目标高度以及目标范围(即目标尺寸的允许误差范围)。每次切割时,需要考虑锯口宽度对实际切割尺寸的影响。要求在剩余原材料的长度内,尽量满足订单的目标尺寸,并尽可能减少切割损失。表1是具体的订单需求: 表1: 订单的具体切割需求 订单号 订单需求对象 订单量(套) 宽度目标(米) 高度目标(米) 窗框单价(元/套) 1 学校教学楼 10 1.6 2.2 480 2 酒店客房 20 1.8 (958点数解答 | 2025-05-11 16:42:18)226